13.11.2020 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Carbin – eine außergewöhnliche Form des Kohlenstoffs

Optische Bandlücke der Kohlenstoffverbindung untersucht

Welche photophysikalischen Eigenschaften hat Carbin? Das haben Wissenschaftler der FAU, der kanadischen University of Alberta und der schweizerischen Ecole Polytechnique Fédérale de Lausanne gemeinsam untersucht – und ein tiefergreifendes Verständnis für diese außergewöhnliche Form des Kohlenstoffs entwickelt.

„Kohlenstoff nimmt eine absolute Sonderstellung im Periodensystem der Elemente ein und bildet mit seiner extrem großen Zahl an chemischen Verbindungen die Grundlage allen Lebens“, sagt Prof. Dr. Dirk M. Guldi vom Lehrstuhl für Physikalische Chemie I der FAU. „Die bekanntesten Beispiele sind dreidimensionaler Graphit und Diamant. Aber auch zweidimensionales Graphen, eindimensionale Nanoröhren und nulldimensionale Nanodots eröffnen neue Möglichkeiten für elektronische Anwendungen der Zukunft.“

Material mit außergewöhnlichen Eigenschaften

Carbin ist eine Modifikation des Kohlenstoffs, ein sogenanntes Allotrop. Es wird synthetisch hergestellt, besteht aus einer einzigen sehr langen Kette von Kohlenstoffatomen und gilt als Material mit äußerst interessanten elektronischen und mechanischen Eigenschaften. „Doch Kohlenstoff zeigt in dieser Form eine hohe Reaktivität“, betont Prof. Dr. Clémence Corminboeuf von der EPFL. „So lange Ketten sind äußerst instabil und entsprechend schwierig zu charakterisieren.“

Dem internationalen Forschungsteam ist diese Charakterisierung über Umwege dennoch gelungen. Die Wissenschaftler um Prof. Dr. Dirk M. Guldi von der FAU, Prof. Dr. Clémence Corminboeuf und Prof. Dr. Holger Frauenrath von der EPFL sowie Prof. Dr. Rik R. Tykwinski von der University of Alberta haben bisherige Annahmen hinsichtlich der photophysikalischen Eigenschaften von Carbin hinterfragt und neue Erkenntnisse gewonnen.

Das Forschungsteam stützte sich dabei vor allem auf sogenannte Oligoine: „Wir können Carbin-Ketten in definierter Länge herstellen und vor Zersetzung schützten, indem wir an den Kettenenden eine Art Stoßstange aus Atomen einbauen. Diese chemisch ausreichend stabile Verbindungklasse wird Oligoine genannt“, erklärt Prof. Dr. Holger Frauenrath von der EPFL.

Optische Bandlücke nutzen

Die Wissenschaftler haben gezielt zwei Serien von Oligoinen hergestellt – mit unterschiedlicher Symmetrie und mit bis zu 24 alternierenden Dreifach- und Einfachbindungen. Im Anschluss daran verfolgten sie mittels Spektroskopie die Deaktivierungsprozesse der jeweiligen Moleküle von der Anregung durch Licht bis hin zur vollständigen Relaxation. „So konnten wir den gesamten Deaktivierungsweg der Oligoine aus einem angeregten Zustand zurück in den ursprünglichen Grundzustand mechanistisch erfassen – und dank der gewonnen Daten eine Vorhersage über die Eigenschaften von Carbin treffen“, bilanziert Prof. Dr. Rik R. Tykwinski von der University of Alberta.

Eine wichtige Erkenntnis dabei: Die sogenannte optische Bandlücke erwies sich als deutlich kleiner als bisher angenommen. Die Bandlücke ist ein Begriff aus der Halbleiterphysik und beschreibt die elektrische Leitfähigkeit von Kristallen, Metallen und Halbleitern. „Das ist ein Riesenvorteil“, sagt Prof. Guldi, „Je kleiner die Bandlücke ist, desto weniger Energie muss zugeführt werden, um Strom zu leiten.“ Diese wichtige Eigenschaft besitzt zum Beispiel Silizium, das aktuell in Mikrochips ebenso steckt wie in Solarzellen. Carbin könnte – dank seiner ausgezeichneten photophysikalischen Eigenschaften – eines Tages Silizium ergänzen.

Fakten, Hintergründe, Dossiers
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Rekordauflösung in der Röntgenmikroskopie

    Forschern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), des Schweizer Paul-Scherrer-Instituts und weiterer Einrichtungen aus Paris, Hamburg und Basel ist ein Rekord in der Röntgenmikroskopie gelungen: Mit verbesserten Beugungslinsen und exakterer Positionierung der Proben err ... mehr

    Lichtgesteuerte Nanomaschine regelt die Katalyse

    Die Zukunftsvision der Miniaturisierung hat inzwischen eine Reihe von synthetisch molekularen Motoren hervorgebracht, die von unterschiedlichen Energiequellen angetrieben werden und verschiedene Bewegungen ausführen können. Einer Forschungsgruppe an der Friedrich-Alexander-Universität Erlan ... mehr

    Der kleinste Besen der Welt

    Ein Forschungsteam der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) hat eine neuartige Methode entwickelt, mit der Oberflächen auf der Nanoskala absolut sauber werden. Durch mechanische Kräfte werden dabei auch kleinste Kontaminationen bis zur atomaren Skala entfernt. Die Ergebni ... mehr

  • q&more Artikel

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Andrea Büttner

    Andrea Büttner, Jahrgang 1971, studierte Lebensmittelchemie an der Ludwig-Maximilians-Universität München. Anschließend promovierte und habilitierte sie an der Technischen Universität München im Bereich Aromaforschung. Seit 2007 baute sie am Fraunhofer IVV das Geschäftsfeld Produktwirkung s ... mehr

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr

Mehr über University of Alberta
Mehr über Ecole Polytechnique Fédérale de Lausanne