08.02.2021 - Technische Universität Darmstadt

„Grüne“ Katalysatoren

Polymerabgeleitete Kohlenstoffe als metallfreie, „grüne“ Alternative zu etablierten Oxidationskatalysatoren und zu Nano-Kohlenstoffen

Katalysatoren sind zentral für viele Industrieprozesse. Doch die häufig dafür verwendeten Übergangsmetalle sind selten, ihr Abbau ist umweltschädlich oder sie sind giftig. In der Arbeitsgruppe von Professor Bastian Etzold am Fachbereich Chemie der TU Darmstadt ist die Synthese makroskopischer Kohlenstoffe gelungen, welche in der Handhabung ähnlich zu gängigen technischen Katalysatoren sind. Das Forschungsteam veröffentlichte seine Ergebnisse nun im renommierten Journal „Angewandte Chemie“ und zeigte: Diese Kohlenstoffe können die hohe katalytische Aktivität und Selektivität erzielen, die sonst nur Nano-Kohlenstoffen aufweisen.

Katalysatoren sind Schlüsselmaterialien der modernen Gesellschaft, die eine selektive Umwandlung von Rohstoffen in Wertprodukte bei gleichzeitiger Abfallvermeidung und Energieeinsparung ermöglichen. Im Falle von industriell relevanten oxidativen Dehydrierungsreaktionen basieren die meisten bekannten Katalysatorsysteme auf Übergangsmetallen wie beispielsweise. B. Eisen, Vanadium, Molybdän, Silber. Die Verwendung von Übergangsmetallen ist mit Nachteilen verbunden: seltenes Vorkommen, umweltschädliche Abbauverfahren und Toxizität. Daher ist vielversprechend, , dass reiner Kohlenstoff eine katalytische Aktivität in dieser Art von Reaktion zeigt und somit ein hohes Potential als nachhaltiges Substitutionsmaterial aufweist.

Bis heute kann die Entwicklung von kohlenstoffbasierten Katalysatoren für oxidative Dehydrierungsreaktionen in zwei Generationen unterteilt werden. Die erste Generation von Kohlenstoffkatalysatoren wurde durch die Entdeckung der katalytischen Aktivität von Koksablagerungen auf metallbasierten Katalysatoren für die oxidative Dehydrierung inspiriert. Im Folgenden wurden hauptsächlich amorphe Kohlenstoffmaterialien wie Aktivkohle oder Ruß untersucht. Obwohl diese frühen Katalysatoren eine signifikante Aktivität und Selektivität aufwiesen, litten sie unter einer unzureichenden Oxidationsstabilität und wurden später von der zweiten Generation kohlenstoffbasierter Dehydrierungskatalysatoren abgelöst, die durch Kohlenstoffnanomaterialien wie zum Beispiel Kohlenstoffnanoröhren repräsentiert wird. Der Vorteil von Nano-Kohlenstoffen gegenüber den amorphen Katalysatoren der ersten Generation liegt vor allem in ihrer kristallinen Mikrostruktur, die einerseits für eine ausreichende Oxidationsbeständigkeit verantwortlich ist und andererseits hohe Redoxaktivitäten ermöglicht. Da Nano-Kohlenstoffe keine innere Porosität aufweisen, befinden sich diese aktiven Zentren an der äußeren Oberfläche und sind somit für Reaktanden gut zugänglich. Nano-Kohlenstoffe weisen jedoch intrinsischer Nachteile z. B. der Handhabung des Schüttgutes oder unklarer Gesundheitsrisiken auf und erfahren somit in der heterogenen Katalyse bis heute keine industrielle Anwendung. 

Angesichts des hohen Potentials von Kohlenstoffkatalysatoren in oxidativen Dehydrierungsreaktionen wird an der TU Darmstadt in der Arbeitsgruppe von Professor Bastian J. M. Etzold bereits seit einigen Jahren an der Synthese neuer Kohlenstoffklassen gearbeitet, mit dem Ziel die hervorragenden katalytischen Eigenschaften von Nano-Kohlenstoffen auf herkömmliche, technisch handhabbare Kohlenstoffmaterialien zu übertragen. Bereits 2015 konnte gezeigt werden, dass mit karbidabgeleiteten Kohlenstoffen prinzipiell ähnliche katalytische Eigenschaften wie Kohlenstoffnanomaterialien erzielt werden können (Chem. Mater. 2015, 27, 5719.). Da karbidabgeleitete Kohlenstoffe aufgrund ihrer komplexen Synthese jedoch lediglich Modellmaterialien für Forschungszwecke darstellen, blieb das grundsätzliche Forschungsziel der Entwicklung einer skalierbaren und reproduzierbaren Syntheseroute zu technisch handhabbaren Kohlenstoffkatalysatoren weiter bestehen. In Zusammenarbeit mit Professor Wei Qi vom Shenyang National Laboratory of Material Science in Shenyang, PR China, sowie Professor Jan Philipp Hofmann vom Fachgebiet Oberflächenforschung der TU Darmstadt gelang Felix Herold, einen Doktoranden der Arbeitsgruppe Etzold, die Synthese einer Generation von Kohlenstoffkatalysatoren, die Nano-Kohlenstoffen in vielerlei Hinsicht überlegen ist. 

Die Synthese der neuartigen Kohlenstoffkatalysatoren basiert auf polymeren Kohlenstoffvorläufern, die reproduzierbar und skalierbar herzustellen sind, und eine exzellente Kontrolle über die Morphologie des späteren Kohlenstoffes bieten. Mittels katalytischer Graphitisierung gelang es, während der Pyrolyse des Polymervorläufers nanoskalige Graphitkristallite innerhalb der Kohlenstoffmatrix wachsen zu lassen, die als Verankerungspunkte für katalytisch aktive Zentren dienen. Produkt der katalytischen Graphitisierung ist ein amorphes/graphitisches Hybridmaterial, welches aus den gezüchteten Graphitkristalliten besteht, die von einer amorphen Kohlenstoffmatrix umgeben sind. Um einen aktiven Dehydrierungskatalysator zu erhalten wird die amorphe Kohlenstoffmatrix durch selektive Oxidation entfernt, wobei die Porenstruktur des Materials geöffnet und Zugänglichkeit zu den großen konjugierten (graphitischen) Domänen erzielt wird. Diese zeichnen sich durch eine hohe Dichte an Defektstellen aus, an den Sauerstoffoberflächengruppen wie z. B. ketonische Carbonylgruppen erzeugt werden. Die benachbarten konjugierten (graphitischen) Domänen scheinen als Elektronenspeicher Schlüssel zu sein, um eine hohe Redoxaktivität der Oberflächengruppen zu gewährleisten.

Als Testreaktion von großem praktischem Interesse wurde die oxidative Dehydrierung von Ethanol ausgewählt, da sie ein katalytisches Bindeglied zwischen Bioethanol, das leicht aus nachwachsenden Rohstoffen gewonnen werden kann, und Acetaldehyd, einem wichtigen Zwischenprodukt in der aktuellen industriellen Chemie darstellt. Im Vergleich zu einem Kohlenstoffnanoröhren-Benchmark-Katalysator konnten mit der neuen Materialklasse um bis zu 10-mal höhere Raum-Zeit-Ausbeuten erzielt werden.

Die in dieser Arbeit vorgestellten Kohlenstoffkatalysatoren sind von großer Bedeutung, da sie die Tür zu einer neuen Materialklasse öffnen, deren Potential aufgrund der vielfältigen Optimierungsmöglichkeiten der flexiblen Syntheseroute zukünftig genutzt werden kann. Neben der Verwendung der neuen Kohlenstoffe in der oxidativen Dehydrierung anderer relevanter Substrate, wie etwa Alkanen und weiterer Alkohole, ist zudem die Erweiterung des Anwendungsbereiches auf die Elektro- und Photokatalyse von Interesse.

Fakten, Hintergründe, Dossiers
  • Synthese
  • Kohlenstoffkatalysatoren
  • Dehydrierungsreaktionen
Mehr über TU Darmstadt
  • News

    Atome in Keramik mechanisch einprägen

    Elektrokeramiken wie zum Beispiel Kondensatoren sind essentielle Bestandteile von elektronischen Geräten. Greift man in ihren kristallinen Aufbau ein, können Eigenschaften gezielt verändert werden. So lassen sich zum Beispiel durch chemische Methoden einzelne Atome im Kristallgitter durch a ... mehr

    Transparente Sicht auf Atombausteine durch inverse Kinematik

    Mit inverser Kinematik, der eleganten Umkehrung einer etablierten Forschungsmethode, und der Wahl der richtigen Messbedingungen stellte ein internationales Team einen Weg für die detaillierte Untersuchung der Eigenschaften der Nukleon-Nukleon-Wechselwirkung im Atomkern vor. Das Experiment w ... mehr

    Effizienter kühlen

    Ein internationales Team der Universität Barcelona, des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der Technischen Universität Darmstadt berichtet im Fachjournal Applied Physics Reviews, wie sich effizientere und umweltschonende Kälteverfahren künftig umsetzen lassen könnten. Dazu hab ... mehr

  • q&more Artikel

    Einsichten

    Eigentlich ist die Brennstoffzellentechnik schon „ein alter Hut“. Die erste Brennstoffzelle wurde von Sir William Grove 1839 entwickelt, der erste Brennstoffzellenstapel bereits 1842 der Öffentlichkeit präsentiert. Trotzdem verstaubte das innovative elektrochemische Konzept vorerst in der S ... mehr

    Makromolekulare Schlingpflanzen

    Eine Kurve, die sich mit konstanter Steigung um den Mantel eines Zylinders windet, wird als ­(zylindrische) Helix bezeichnet. Ihre Bildung kann man sich als eine Überlagerung einer Trans­lations- mit einer Rotations­bewegung vorstellen, wobei bei gleich bleibendem Rotationssinn ein Wechsel ... mehr

    Kohlenstoff in 1-D, 2-D und 3-D

    Das Element Kohlenstoff sorgt wie kein anderes ­Element des Periodensystems der Elemente seit­ ­nunmehr als 25 Jahren in regelmäßigen Abständen für intensive Forschungsaktivitäten. War es Mitte der 80er-Jahre die Entdeckung der gezielten Synthese der sphärischen Allotrope des Kohlenstoffs, ... mehr

  • Autoren

    Prof. Dr. Katja Schmitz

    Katja Schmitz, geb. 1978, studierte Chemie in Bonn und Oxford und fertigte nach dem Diplom­abschluss 2002 ihre Promotion über Peptide, Peptoide und Oligoamine als molekulare Transporter in der Arbeitsgruppe von Ute Schepers im Arbeitskreis von Konrad Sandhoff an der Universität Bonn an. 200 ... mehr

    Constantin Voss

    Constantin Voss, geb. 1985, studierte Chemie an der Technischen Universität Darmstadt mit dem Abschluss Diplom-Ingenieur. Seine Diplomarbeit mit dem Titel „Synthese von funktionali­sierten Distyrylpyridazinen für die Fluoreszenz­diagnostik“ fertigte er 2011 im Arbeitskreis Prof. Boris Schmi ... mehr

    Prof. Dr. Boris Schmidt

    Boris Schmidt, geb. 1962, studierte Chemie an der Universität Hannover und am Imperial College in London. Nach seiner Promotion 1991 an der Universität Hannover lehrte er bis 1994 am Uppsala Biomedical Centre und forschte zwischenzeitlich als DFG-Stipendiat im Rahmen eines Post-Doc-Aufentha ... mehr