22.04.2021 - Technische Universität Wien

2D-Nanomaterial MXene: Der perfekte Schmierstoff

Bei extremer Hitze oder im Vakuum des Weltraums – ein neuartiges Nanomaterial bringt in Extremsituationen Höchstleistungen

Die Fahrradkette kann man mit Öl schmieren, aber was macht man bei einem Marsrover oder bei einem glühend heißen Transportband in der Stahlindustrie? Ganz spezielle Nanomaterialien wurden nun von der TU Wien gemeinsam mit Forschungsgruppen aus Saarbrücken (Deutschland), der Purdue University in den USA und der Universidad de Chile (Santiago, Chile) untersucht.

Die Materialklasse der MXene (sprich: Maxene) sorgte in den letzten Jahren eigentlich im Zusammenhang mit neuartigen Batterie-Technologien für großes Aufsehen. Doch wie sich nun zeigt, sind sie auch ein hervorragender Festschmierstoff, der extrem haltbar ist und auch unter schwierigsten Bedingungen seine Aufgabe dauerhaft erfüllt. Diese bemerkenswerten Eigenschaften der MXene wurden nun im Fachjournal ACS Nano publiziert.

Wie ein Stapel Papierblätter

Wie das Kohlenstoff-Material Graphen zählen auch die MXene zu den sogenannten 2D-Materialien: Ihre Eigenschaften werden wesentlich dadurch bestimmt, dass es sich um ultradünne Schichten handelt, um einzelne Atomlagen, ohne starke Bindungen nach oben oder unten.

„Man beginnt zunächst mit sogenannten MAX-Phasen, das sind spezielle Schichtsysteme, die etwa aus Titan, Aluminium und Kohlenstoff bestehen“, sagt Prof. Carsten Gachot, Leiter der Tribologie-Gruppe am Institut für Konstruktionswissenschaften und Produktentwicklung der TU Wien. „Der entscheidende Trick ist, das Aluminium mit Flusssäure heraus zu ätzen.“

Übrig bleibt dann ein Stapel von atomar dünnen Schichten aus Titan und Kohlenstoff, die ähnlich wie Papierblätter lose aufeinanderliegen. Jede Schicht für sich ist relativ stabil, die Schichten können sich aber gegeneinander problemlos verschieben.

Diese Verschiebbarkeit der atomaren Schichten untereinander macht das Material zu einem hervorragenden Trockenschmiermittel: Ohne Abrieb zu erzeugen wird ein extrem widerstandsarmes Gleiten ermöglicht. Die Reibung zwischen Stahloberflächen konnte damit auf ein Sechstel reduziert werden – und das mit außergewöhnlich hoher Verschleißbeständigkeit: Auch nach 100.000 Bewegungszyklen funktionierte die MXene-Schmierschicht noch problemlos.

Das ist perfekt für den Einsatz unter erschwerten Bedingungen: Während Schmieröl etwa im Vakuum bei Weltraummissionen sofort verdampfen würde, lassen sich MXene in Form von feinem Pulver auch dort einsetzen.

Unabhängig von Atmosphäre und Temperatur

„Man hat Ähnliches auch schon mit anderen Dünnschicht-Materialien versucht, etwa mit Graphen oder Molybdändisulfid“, sagt Carsten Gachot. „Aber sie reagieren empfindlich auf Feuchtigkeit in der Atmosphäre. Wassermoleküle können die Bindungskräfte zwischen den einzelnen Schichten verändern. Bei MXenen spielt das hingegen eine geringere Rolle.“

Ein weiterer, entscheidender Vorteil ist die Hitzebeständigkeit von MXenen: „Viele Schmiermittel oxidieren bei großer Hitze und verlieren dabei ihre Schmierfähigkeit. MXene hingegen sind viel stabiler, man kann sie sogar in der Stahlindustrie einsetzen, wo mechanisch bewegte Teile schon mal eine Temperatur von mehreren hundert Grad Celsius erreichen können“, erklärt Gachot.

Untersucht wurde das pulverförmige Schmiermittel in mehreren Experimenten an der TU Wien von Dr. Philipp Grützmacher aus Prof. Gachots Arbeitsgruppe sowie der Universität des Saarlandes in Saarbrücken und der Purdue Universität in den USA. Wesentlichen Anteil an der Initiierung und Konzeption der Arbeit hatte dabei am anderen Ende der Welt Prof. Andreas Rosenkranz in Chile.

„Auch von Seiten der Industrie gibt es bereits großes Interesse an diesen Materialien. Wir gehen davon aus, dass solche MXene schon bald in größerem Maßstab hergestellt werden können“, ist Carsten Gachot zuversichtlich.

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Energie chemisch speichern, verlustfrei monatelang lagern und im Winter damit heizen

    Energie langfristig zu speichern ist wohl das größte bisher ungelöste Problem der Energiewende. An der TU Wien wurde nun ein neuartiger chemischer Wärmespeicher erfunden, mit dem man große Energiemengen auf umweltfreundliche Weise praktisch unbegrenzt lange speichern kann. Man verwendet Wär ... mehr

    Das Platin-Rätsel

    Was passiert, wenn eine Katze auf eine Sonnenblume klettert? Die Sonnenblume ist nicht stabil, sie wird sich rasch nach unten verbiegen, und die Katze ist wieder auf dem Boden. Wenn die Katze aber nur einen raschen Zwischenschritt benötigt, um von dort aus einen Vogel zu erwischen, dann kan ... mehr

    Donuts und Laserstrahlen

    Ein Donut ist keine Semmel. Aus mathematischer Sicht sind das zwei grundverschiedene Objekte: Der Donut hat ein Loch, die Semmel nicht. Einen Kreis, der im Donut rund um das Loch in seiner Mitte herumführt, kann man nicht zu einem Punkt zusammenziehen. Einen beliebigen Kreis innerhalb der S ... mehr

  • Videos

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Wirkstoffsuche im Genom von Pilzen

    In Pilzen schlummert ein riesiges Potenzial für neue Wirkstoffe und wertvolle Substanzen, wie etwa Antibiotika, Pigmente und Rohstoffe für biologische Kunststoffe. Herkömmliche Methoden zur Entdeckung dieser Verbindungen stoßen zurzeit leider an ihre Grenzen. Neueste Entwicklungen auf den G ... mehr

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

  • Autoren

    Dr. Christian Derntl

    Christian Derntl, Jahrgang 1983, studierte Mikrobiologie und Immunologie an der Universität Wien mit Abschluss Diplom. Sein Doktoratsstudium im Fach Technische Chemie absolvierte er 2014 mit Auszeichnung an der Technischen Universität Wien. Dabei beschäftigte er sich mit der Regulation von ... mehr

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

Mehr über Uni des Saarlandes
Mehr über Purdue University
  • News

    Mikrowellen liefern neue Technologie für Batterien

    Eine neue Batterietechnologie mit Mikrowellen könnte einen neuen Weg für die Umwandlung und Speicherung erneuerbarer Energien eröffnen. Forscher der Purdue University haben eine Technik entwickelt, um Polyethylenterephthalat, eines der am besten recycelbaren Polymere, in Komponenten von Bat ... mehr

    Nanoketten könnten die Batteriekapazität erhöhen und die Ladezeit verkürzen

    Die Lebensdauer der Batterie Ihres Telefons oder Computers hängt davon ab, wie viele Lithiumionen im negativen Elektrodenmaterial der Batterie gespeichert werden können. Wenn der Akku keine dieser Ionen mehr enthält, kann er keinen elektrischen Strom zum Betreiben eines Geräts erzeugen und ... mehr

    3.000 Meilen mit einem Elektroauto?

    Eine neue Art von Elektrofahrzeugantrieb mit der "nachfüllbaren" Technologie hat einen weiteren großen Sprung bei der Weiterentwicklung alternativer Energien gemacht, mit Tests, die zeigen, dass sie genügend Energie liefern könnten, um ein Auto für etwa 3.000 Meilen zu betreiben.Die Technol ... mehr

Mehr über Universidad de Chile
  • News

    Kupferbergbau mit bioaktiven Stoffen aus Bakterien

    Chile ist einer der wichtigsten Kupferlieferanten für Deutschland. Im Rahmen der Wissenschaftlich-Technologischen Zusammenarbeit beider Länder wird nun untersucht, wie sich chilenische Kupfererze umweltverträglicher aufbereiten lassen. Aus Bakterien gewonnene bioaktive Stoffe sollen Chemika ... mehr