17.12.2021 - Technische Universität Berlin

Neuer Algorithmus treibt den Einsatz von KI in den Materialwissenschaften voran

Geisterhaften Fernwirkungen auf der Spur: Neuer Deep Learning Algorithmus lernt komplexe Moleküldynamiken

Noch weitgehend Neuland ist der Einsatz von Künstlicher Intelligenz (KI) in den klassischen Wissenschaften wie Chemie, Physik oder Mathematik: Forscher des Berlin Institutes for the Foundation of Learning and Data (BIFOLD) an der TU Berlin in Zusammenarbeit mit Google Research ist es nun gelungen, einen Algorithmus zu entwickeln, der anhand von quantenmechanischen Daten den potenziellen Energiezustand von einzelnen Molekülen mit großer Genauigkeit und Effizienz vorhersagen kann. Damit könnten sich speziell für Materialwissenschaftler ganz neue Optionen ergeben. Das Paper „SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects“ wurde jetzt in Nature Communications veröffentlicht.

„Quantenmechanik befasst sich unter anderem mit den chemischen und physikalischen Eigenschaften eines Moleküls auf Basis der räumlichen Anordnung ihrer Atome. Eine chemische Reaktion wiederum beruht auf dem Zusammenspiel vieler Moleküle und ist ein multidimensionaler Prozess“, erläutert BIFOLD Co-Direktor Prof. Dr. Klaus-Robert Müller. Die einzelnen Schritte einer chemischen Reaktion auf Molekülebene oder sogar auf atomarer Ebene vorherzusagen und zu modellieren ist ein lang gehegter Traum vieler Materialwissenschaftler.

Jedes einzelne Atom im Fokus

Eine entscheidende Rolle für die Reaktionsfähigkeit von Molekülen spielt die sogenannte Potentialhyperfläche. Sie beschreibt die Abhängigkeit der Energie der Atome eines Moleküls von der geometrischen Anordnung der Atomkerne. Die Kenntnis der ultragenauen Potentialhyperflächen von Molekülen erlaubt es, die Bewegung einzelner Atome, etwa während einer chemischen Reaktion, zu simulieren, um deren dynamische quantenmechanische Eigenschaften besser zu verstehen und dadurch Ablauf und Ergebnis von Reaktionen exakt vorherzusagen. „Man kann sich die Potentialhyperfläche wie eine Landschaft mit Bergen und Tälern vorstellen. Ähnlich wie bei einer Murmel, die über eine Miniaturversion dieser Landschaft rollt, wird die Bewegung der Atome durch die Berge und Täler auf der Potentialhyperfläche bestimmt: Man nennt das auch Molekulardynamik", erklärt Dr. Oliver Unke, Forscher bei Google Research in Berlin.

Im Gegensatz zu vielen anderen Anwendungsgebieten des maschinellen Lernens, in denen einer KI häufig nahezu endlose Datenmengen zur Verfügung stehen, sind für die Vorhersage von Potentialhyperflächen typischerweise nur wenige quantenmechanische Referenzdaten vorhanden, die unter Einsatz von enormer Rechenleistung erzeugt werden müssen. „So kann die exakte mathematische Modellierung molekulardynamischer Eigenschaften zwar einerseits teure und zeitaufwändige Laborexperimente einsparen, benötigt aber im Gegenzug unverhältnismäßig hohe Rechenleistungen. Wir hoffen, dass unser neuartiger Deep Learning Algorithmus – ein sogenanntes Transformer Modell, das erstmals auch Spin und Ladung von Atomen berücksichtigt – zu neuen Erkenntnissen im Bereich der Chemie, Biologie und Materialwissenschaften führen wird – bei deutlich geringerer Rechenleistung“, so Klaus-Robert Müller.

Um eine besonders hohe Daten-Effizienz zu erreichen, kombiniert das neue Deep Learning Modell der Forscher die KI mit bekannten physikalischen Gesetzen. Bestimmte Aspekte der Potentialhyperfläche können mit einfachen physikalischen Formeln sehr genau beschrieben werden. Die neue Methode erlernt daher nur die Anteile der Potentialhyperfläche, für die keine einfache mathematische Beschreibung verfügbar ist. „Sehr praktisch: Die KI muss nur das lernen, was man noch nicht aus der Physik weiß", erläutert Klaus-Robert Müller. Dadurch kann Rechenleistung eingespart werden.

Räumliche Trennung von Ursache und Wirkung

Eine weitere Besonderheit ist, dass der Algorithmus auch nichtlokale Wechselwirkungen beschreiben kann. „Nichtlokalität“ bedeutet in diesem Zusammenhang, dass eine Veränderung an einem Atom, an einer bestimmten geometrischen Position des Moleküls, Einfluss auf Atome an einer räumlich getrennten geometrischen Molekülposition haben kann. Aufgrund der räumlichen Trennung von Ursache und Wirkung – Albert Einstein sprach von „geisterhaften Fernwirkungen" – sind diese Eigenschaften von Quantensystemen besonders schwer für eine KI zu lernen. Die Forscher lösten dieses Problem mit einem sogenannten Transformer, einer Methode, welche ursprünglich für die maschinelle Verarbeitung von Sprache und Texten oder auch Bildern entwickelt wurde. „In einem Text ist die Bedeutung eines Wortes oder Satzes häufig stark vom Kontext abhängig. Dabei kann die relevante Kontext-Information in einem völlig anderen Textabschnitt stehen. In diesem Sinne ist auch Sprache auf eine Art und Weise nichtlokal", erklärt Klaus-Robert Müller den Zusammenhang. Mit Hilfe eines solchen Transformers können die Wissenschaftler auch verschiedene elektronische Zustände eines Moleküls wie Spin und Ladung unterscheiden. „Das ist zum Beispiel relevant für physikalische Prozesse in Solarzellen, in denen ein Molekül Licht absorbiert und dadurch in einen anderen elektronischen Zustand versetzt wird“, erklärt Oliver Unke.

Fakten, Hintergründe, Dossiers
  • Moleküle
  • Deep Learning
  • maschinelles Lernen
Mehr über TU Berlin
  • News

    Grüner Wasserstoff für die Massenproduktion

    Für die erfolgreiche Demonstration einer neuartigen alkalischen Elektrolyse wurde Prof. Dr. Peter Strasser, Leiter des Fachgebiets Elektrochemie und Elektrokatalyse, gemeinsam mit seinem Team und Kolleg*innen der Albert-Ludwigs-Universität Freiburg mit dem „f-cell“ Award in der Kategorie „F ... mehr

    Bis zu 10 Millionen Euro Förderung für Transfer im Bereich Grüne Chemie

    Ein Konsortium aus insgesamt 29 Partner*innen erhält für das Konzept GreenCHEM eine Förderung in Höhe von bis zu 10 Millionen Euro vom Bundesministerium für Bildung und Forschung, um die Hauptstadtregion zum internationalen Hotspot für chemische Deep-Tech Innovationen weiterzuentwickeln Zum ... mehr

    Neuer KI-Algorithmus generiert innovative Substanzen auf Basis von gewünschten Eigenschaften

    In der Medizin, in der Batterieforschung oder in der Materialwissenschaft – überall sind Wissenschaftler*innen auf der Suche nach innovativen Substanzen. Dabei können die Forscher*innen oft sehr detailliert die gewünschten chemischen und physikalischen Eigenschaften bis auf die atomare Eben ... mehr

  • q&more Artikel

    Wasser statt Mineralöl

    Grundlage vieler Medikamente sind Wirkstoffe aus chiralen Bausteinen. Für die chemische Herstellung sind teure Edelmetallkatalysatoren notwendig, die sich aufgrund ihrer thermischen Instabilität bei höheren Temperaturen zersetzen und daher nur einmal verwendet werden können. mehr

    David gegen Goliath

    Wo der Laie nur ekligen Schimmel sieht, offenbart sich beim Blick durch das Mikroskop eine ganz besondere Welt der Ästhetik. Ein ­filigranes Netzwerk aus lang gestreckten und verzweigten Pilz­hyphen durchsetzt das Substrat, Lufthyphen erobern den Luftraum und bilden farbige Sporen, mit dene ... mehr

  • Autoren

    Dr.-Ing. Henriette Nowothnick

    Jg. 1980, studierte Chemie an der Technischen Universität Berlin. Sie promovierte 2010 in der Arbeitsgruppe von Prof. R. Schomäcker über die Reaktionsführung der Suzuki-Kupplung in Mikro­emulsionen mit dem Ziel des Katalysator Re-using und der Produktisolierung. 2011 bis 2012 arbeitete sie ... mehr

    Dipl. Ing. Sonja Jost

    Jg. 1980, studierte Wirtschafts­ingenieurwesen / Technische Chemie an der Technischen Universität Berlin. Von 2006 bis 2011 erhielt sie verschiedene Forschungsstipendien im Bereich der homogenen chiralen Katalyse. 2011 bis 2012 war sie Projektleiterin eines Drittmittelprojekts zum Thema „Ka ... mehr

    Prof. Dr. Vera Meyer

    Vera Meyer, geb. 1970, studierte Biotechnologie an der Universität ­Sofia und der Technischen Universität Berlin, wo sie 2001 promovierte. Nach Forschungs- aufenthalten am Imperial College London und der Universität Leiden habilitierte sie 2008 an der Technischen Universität Berlin. Von 200 ... mehr