Starke Laser werfen neues Licht auf die Elektronendynamik von Flüssigkeiten

Neues spektroskopisches Werkzeug zur Untersuchung von Flüssigkeiten

02.10.2023
Joerg M. Harms / MPSD

Ein intensiver Laserpuls (in rot) trifft auf einen Strom von Wassermolekülen und löst eine ultraschnelle Dynamik der Elektronen in der Flüssigkeit aus.

Das Verhalten von Elektronen in Flüssigkeiten bestimmt eine Vielzahl von chemischen Prozessen und damit wesentliche Vorgänge in Organismen und unserer Umwelt. Die Bewegungen der Elektronen sind jedoch extrem schwer zu erfassen, da sie sich innerhalb von Attosekunden, also im Bereich von Quintillionstel Sekunden, abspielen. Da fortschrittliche Laser heute auf diesen Zeitskalen arbeiten, können sie Wissenschaftler*innen mittels verschiedener Techniken Einblicke in diese ultraschnellen Prozesse geben.

Ein internationales Forschungsteam des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) in Hamburg und der ETH Zürich hat nun gezeigt, dass es möglich ist, die Elektronendynamik in Flüssigkeiten mit Hilfe intensiver Laserfelder zu untersuchen und die mittlere freie Weglänge von Elektronen zu bestimmen – also die durchschnittliche Distanz, die ein Elektron zurücklegen kann, bevor es mit einem anderen Teilchen kollidiert. Sie fanden heraus, dass der Mechanismus, durch den Flüssigkeiten das so genannte hochharmonische Lichtspektrum emittieren, sich deutlich von dem in anderen Materiephasen wie Gasen und Festkörpern unterscheidet. Die Erkenntnisse des Teams eröffnen die Möglichkeit, die ultraschnelle Dynamik in Flüssigkeiten besser zu verstehen.

Die Erzeugung hochenergetischer Photonen mit Hilfe intensiver Laserfelder, die so genannte high harmonic generation (HHG), ist eine weit verbreitete Technik, die routinemäßig in vielen wissenschaftlichen Bereichen eingesetzt wird, beispielsweise zur Untersuchung elektronischer Bewegungen in Materialien oder zur Verfolgung chemischer Reaktionen über bestimmte Zeitspannen. HHG wurde schon ausgiebig in Gasen und, in jüngerer Zeit, in Kristallen untersucht. In Flüssigkeiten ist dies jedoch ein weitaus weniger erforschtes Phänomen.

Nun berichtet das schweizerisch-deutsche Forschungsteam in Nature Physics, wie es das einzigartige Verhalten von Flüssigkeiten bei der Bestrahlung mit intensiven Lasern nachgewiesen hat. Bislang ist fast nichts über diese lichtinduzierten Prozesse in Flüssigkeiten bekannt – im Gegensatz zur raschen Erforschung des Verhaltens insbesondere von Festkörpern unter Bestrahlung in den letzten Jahren. So entwickelte das Team der ETH Zürich eine einzigartige Apparatur, um speziell die Wechselwirkung von Flüssigkeiten mit intensiven Lasern zu untersuchen. Die Forschenden entdeckten ein besonderes Verhalten, bei dem die maximale Photonenenergie, die durch HHG in Flüssigkeiten erreicht wird, unabhängig von der Wellenlänge des Lasers ist. Welcher Faktor ist also stattdessen verantwortlich für diese Obergrenze?

Mit jener Frage befasste sich die MPSD-Theoriegruppe. Dabei entdeckten die Hamburger Forscher*innen einen bisher unentdeckten Zusammenhang. „Die Entfernung, die ein Elektron in der Flüssigkeit zurücklegen kann, bevor es mit einem anderen Teilchen kollidiert, ist der entscheidende Faktor, der die Photonenenergie begrenzt“, so MPSD-Wissenschaftler Nicolas Tancogne-Dejean, einer der Mitautoren der Studie. „Es gelang uns, diese Größe, die als effektive mittlere freie Weglänge der Elektronen bekannt ist, aus den experimentellen Daten dank eines speziell entwickelten analytischen Modells unter Berücksichtigung der Elektronenstreuung zu ermitteln.“

Durch die Kombination der experimentellen und theoretischen Ergebnisse in ihrer Studie zur HHG in Flüssigkeiten haben die Wissenschaftler*innen nicht nur den Schlüsselfaktor identifiziert, der die maximale Photoenergie bestimmt, sondern auch das erste Experiment der hochharmonischen Spektroskopie in Flüssigkeiten durchgeführt. Bei niedriger kinetischer Energie, dem in dieser Studie experimentell untersuchten Bereich, ist die effektive mittlere freie Weglänge der Elektronen sehr schwer zu messen. Die Arbeit des ETH Zürich / MPSD-Teams etabliert daher die HHG als neues spektroskopisches Werkzeug zur Untersuchung von Flüssigkeiten und ist somit ein wichtiger Schritt auf dem Weg zum Verständnis der Dynamik von Elektronen in Flüssigkeiten.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren