12.04.2012 - Ludwig-Maximilians-Universität München (LMU)

Bessere Akkus mit Kohlenstoff-Nanoteilchen

Die Zahl der mobilen Elektrogeräte vom Smartphone bis hin zum E-Bike steigt weltweit kontinuierlich an. Damit wächst auch der Bedarf für kleine, leichte und gleichzeitig leistungsfähige Akkus. Nachdem die Entwicklung der sogenannten Lithium-Ionen-Akkus weitgehend ausgereizt ist, schaut die Fachwelt auf  neue, vielversprechende Stromspeicher, die Lithium-Schwefel-Akkus. Um deren Realisierung voranzutreiben entwickelte ein Team um den LMU-Chemiker Professor Thomas Bein und Linda Nazar von der kanadischen Waterloo Universität poröse Nanopartikel aus Kohlenstoff, in denen der Schwefel so eingelagert ist, dass eine größtmögliche Leistungsfähigkeit des Akkus erreicht wird.

Die bisherigen Prototypen des Lithium-Schwefel-Akkus bestehen aus einer Lithium-Elektrode und einer Schwefel-Kohlenstoff-Elektrode, zwischen denen Lithium-Ionen aus-getauscht werden. Der Schwefel spielt in diesem System eine besondere Rolle: zum einen kann er im Idealfall zwei Lithium-Ionen pro Schwefelatom aufnehmen und ist daher wegen seines geringen Gewichts ein exzellenter Energiespeicher. Gleichzeitig ist er aber selber kaum leitfähig, so dass Elektronen beim Be- und Entladen nur schwer weitertransportiert werden können. Die Idee der Münchner Wissenschaftler ist es daher, Schwefel mit einer möglichst großen Oberfläche zur Elektronenaufnahme zu generieren und ihn gleichzeitig an leitfähiges Material zu koppeln.

Dazu entwickelten Thomas Bein, Mitglied bei der Nanosystems Initiative Munich (NIM), und sein Team ein Gerüst aus porösen Kohlenstoffnanopartikeln. In den 3-6 Nanometer großen Poren kann sich der Schwefel homogen verteilen. Dadurch liegen fast alle Schwefelatome frei zugänglich, um Lithium-Ionen aufzunehmen. Gleichzeitig befinden sie sich in der Nähe des leitfähigen Kohlenstoffs.

„Der Schwefel ist in den neuartigen hochporösen Kohlenstoffnanoteilchen elektrisch sehr gut zugänglich und wird darin stabilisiert, so dass wir eine hohe Anfangskapazität von 1200 mAh/g und gute Zyklenstabilität erzielen konnten“, erklärt Thomas Bein. „Unsere Ergebnisse zeigen die große Bedeutung der Nano-Morphologie für die Leistungsfähigkeit neuer Konzepte zur Energiespeicherung.“ 

Die Kohlenstoff-Struktur verringert auch das sogenannte Polysulfid-Problem. Polysulfide entstehen als Zwischenprodukt der Elektrolyse und können das Laden und Entladen des Akkus beeinträchtigen. Der Kohlenstoff bindet das Polysulfid jedoch solange, bis dessen Umwandlung zum unschädlichen Dilithiumsulfid abgeschlossen ist. Zusätzlich konnten die Wissenschaftler das von ihnen entwickelte Kohlenstoff-Material mit einer dünnen Silizium-Oxid-Schicht überziehen, die vor Polysulfid schützt, ohne die Leitfähigkeit zu beein-trächtigen.

Mit ihrem neuem Material stellten die Wissenschaftler ganz nebenbei einen neuen Rekord auf: Unter allen mesoporösen Kohlenstoff-Nanopartikeln weist ihr Material nach aktueller Datenlage das bisher größte innere Porenvolumen (2,32 cm3/g) und die extrem hohe Oberfläche von 2445 m2/g auf. Das entspricht ungefähr dem Volumen eines Zuckerwürfels und der Oberfläche von zehn Tennisfeldern – vielleicht werden ähnlich große Oberflächen bald in unseren Akkus stecken.

Fakten, Hintergründe, Dossiers
Mehr über LMU
  • News

    Dynamische Nanowelt im Fokus

    Physiker der Universität Konstanz, der Ludwig-Maximilians-Universität München (LMU München) und der Universität Regensburg haben experimentell nachgewiesen, dass ultrakurze Elektronenpulse durch die Interaktion mit Lichtwellen in nanophotonischen Materialien eine quantenmechanische Phasenve ... mehr

    Chemische Evolution: Am Anfang war der Zucker

    Der Ursprung allen Lebens liegt in organischen Molekülen. Doch wie sind diese aus anorganischen Stoffen entstanden? Der LMU-Chemiker Oliver Trapp berichtet über einen Reaktionsweg, bei dem sich Zucker an Mineralien ohne Wasser bilden. Eine Reise zurück in die Vergangenheit: Vor mehr als vie ... mehr

    Recycling von Selten-Erd-Elementen mithilfe von Bakterien?

    Selten-Erd-Elemente sind technologisch unverzichtbare Rohstoffe. LMU-Chemiker haben nun gezeigt, dass ein Bestandteil bakterieller Enzyme einige der begehrten Elemente umweltschonend aus Gemischen isolieren kann. Selten-Erd-Elemente (SEE) sind aus dem modernen Leben kaum mehr wegzudenken: C ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

Mehr über University of Waterloo