Röntgenblitze sollen helfen, Händigkeit zu begreifen

Neue Methode um sich schraubenförmig ausbreitendes Röntgenlicht zu vermessen

22.04.2014 - Deutschland

Eine Forschergruppe unter der Leitung von European XFEL-Wissenschaftlern hat eine neue Methode eingesetzt, um sich schraubenförmig ausbreitendes – oder zirkular polarisiertes – Röntgenlicht zu identifizieren und zu messen, dessen Anwendung neue Gebiete der Chemie und anderer Wissenschaftsbereiche erschließen könnte. Das Verfahren wurde erstmals am Freien Elektronen Laser FERMI in Triest getestet, der derzeit einzigen Anlage der Welt, an der so intensives und polarisiertes Laserlicht zur Verfügung steht.

European XFEL

Mit Hilfe dreidimensionaler Spektren, die wie dieses die durch den Röntgenlaser aus dem Heliumatom herausgeschlagenen Elektronen zeigen, können die Forscher Rückschlüsse auf die zirkulare Polarisation ziehen.

Die Arbeit, an der auch Wissenschaftler von FERMI, DESY und anderen Forschungseinrichtungen beteiligt waren, wurde im Online-Journal Nature Communications veröffentlicht.

In zirkular polarisierte Röntgenstrahlen setzen Forscher verschiedener Fachrichtungen große Erwartungen, da sie Informationen über chemische Asymmetrien – auch als Händigkeit oder Chiralität bezeichnet – enthüllen können. Viele Reaktionen und Mechanismen in diesem Zusammenhang sind gut untersucht, aber ein tieferes Verständnis der den Reaktionen zugrunde liegenden Asymmetrien könnte unter anderem weitreichende Auswirkungen auf die Entwicklung chemischer und pharmazeutischer Prozesse haben. Außerdem spielen Asymmetrien auch bei magnetischen Eigenschaften eine Rolle, wo ihre Erforschung zu Fortschritten bei der Datenspeicherung führen könnte.

Die Methode, die Wissenschaftler von European XFEL in Zusammenarbeit mit Kollegen von anderen Forschungseinrichtungen verwendet haben, basiert auf Messungen an Helium-Atomen, die den Röntgenblitzen ausgesetzt werden. Die Blitze schlagen dabei eins der beiden Elektronen des Heliums heraus, so dass ein geladenes Ion entsteht. Das Heliumion und das wegfliegende Elektron erhalten dabei eine Polarisierung, die von der Polarisierung des Röntgenblitzes abhängt. Wenn Atom und Elektron dann vom Strahl eines „normalen“ optischen Lasers mit bekannter Polarisierung getroffen und durch ein Spektrometer beobachtet werden, lässt sich die Polarisation des Röntgenstrahls präzise vermessen.

„So wie ein Fährtenleser aus den Spuren wilder Tiere herauslesen kann, wohin und wie schnell es sich bewegt hat, können wir aus dem elektromagnetischen Fußabdruck der Röntgenblitze auf dem Helium schließen, wie und wie stark sie polarisiert sind,“ erklärt Michael Meyer, leitender Wissenschaftler bei European XFEL und Hauptautor der Arbeit. “Diese Experimente öffnen die Tür für eine neue Art von Untersuchungen, die auf vielen Gebieten Anwendungen finden können. Unsere Ergebnisse zeigen, dass es möglich ist Licht mit dieser speziellen Eigenschaft – der zirkularen Polarisation – als Werkzeug zur Untersuchung von Asymmetrien bei Atomen und komplexeren Biomolekülen zu verwenden.

An Freie-Elektronen-Lasern wie FERMI und dem European XFEL nutzen Wissenschaftler deren intensive Lichtblitze, um Proben atomgenau abzubilden oder sehr schnelle Prozesse zu untersuchen. Um aber das volle Potenzial dieser neuen Großforschungseinrichtungen zu erschließen, möchten die Wissenschaftler auch andere Besonderheiten der Strahlung nutzen, darunter die zirkulare Polarisation. Polarisation ist eine häufig beobachtete Eigenschaft des Lichts, die auch im Alltag Verwendung findet, beispielsweise in Sonnenbrillen, Windschutzscheiben und Fernsehgeräten, wobei die elektromagnetischen Felder der Lichtstrahlen jeweils in einer bestimmten Art und Weise ausgerichtet sind. Bei zirkular polarisiertem Licht beispielsweise drehen sich diese Felder wie ein Korkenzieher im Uhrzeigersinn oder umgekehrt.

Für viele Fragestellungen müssen Wissenschaftler wissen, in welchem Maße die Röntgenstrahlen, mit denen sie arbeiten, zirkular polarisiert sind und in welcher Drehrichtung. Eine der spannendsten Fragen in diesem Zusammenhang ist die, warum so viele wichtige Biomoleküle eine Händigkeit aufweisen. Händigkeit – auch als Chiralität bezeichnet – führt dazu, dass einige Moleküle in zwei spiegelbildlichen Formen existieren, eine “rechtshändige” und eine “linkshändige”. Eine interessante Frage in der Biochemie ist es, warum bestimmte molekulare Bausteine des Lebens wie Aminosäuren ausschließlich linkshändig sind, während andere wie Zucker fast ausschließlich rechtshändig vorliegen.

„Untersuchungen mit zirkular polarisierten Röntgenblitzen könnten enthüllen, warum bei Biomolekülen ein Überschuss der linkshändigen oder rechtshändigen existiert“, erklärt Meyer. In ähnlicher Weise könnten Studien magnetischer Materialien, bei denen Wissenschaftler versuchen magnetische Eigenschaften auf immer kleineren Raum unterzubringen, ein möglicher Startpunkt für die Entwicklung von Datenspeichern mit extrem hoher Kapazität sein.

In manchen Anwendungen ist es schwierig, zirkular polarisierte Röntgenstrahlen von „normalem“, willkürlich orientierten unpolarisierten Röntgenstrahlen zu unterscheiden, denn die Polarisationsfilter, die diese beiden Arten von Licht normalerweise trennen könnten, existieren für die intensive Röntgenlaserstrahlung nicht. Die neue Technik füllt hier eine Lücke.

„Die Technik erfordert eine präzise Kontrolle der Polarisation der Röntgenlaserstrahlung und eine exakte Synchronisation mit dem optischen Laser“, sagt Carlo Callegari, Wissenschaftler bei FERMI, Mitautor der Arbeit und Koordinator des LDM-Instruments, an dem die Arbeit ausgeführt wurde.

Das Verfahren ist relativ einfach anzuwenden, erfordert nicht viel zusätzliches Material und kann leicht auf andere Einrichtungen wie den European XFEL übertragen werden. „Wissenschaftler können die Polarisation nun besser prüfen, was sich besonders zum Beispiel nach Änderungen an den optischen Elementen empfiehlt – ähnlich wie Musiker von Zeit zu Zeit sicherstellen müssen, dass ihr Instrument noch richtig gestimmt ist,“ erklärt Meyer.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
ERASPEC

ERASPEC von eralytics

Einfachste Kraftstoffanalyse in Sekunden mit ERASPEC

Bestimmung von bis zu 40 Kraftstoffparametern auf Knopfdruck

ALPHA II

ALPHA II von Bruker

Chemische Analyse leicht gemacht: Kompaktes FT-IR-System

Steigern Sie die Effizienz Ihrer Routineanalysen mit benutzerfreundlicher Technologie

FT-IR-Spektrometer
S4 T-STAR

S4 T-STAR von Bruker

TXRF-Spektrometer: Sub-ppb Nachweisgrenzen & 24/7 Analytik

Minimale Betriebskosten, weil Gase, Medien oder Laborausrüstung entfallen

Totalreflexions-Röntgenfluoreszenzspektrometer
ZEEnit

ZEEnit von Analytik Jena

Zeeman-Technik mit maximaler Empfindlichkeit und Applikationsvielfalt

Quergeheizte Graphitrohrofen für optimale Atomisierungsbedingungen und hohen Probendurchsatz

AAS-Spektrometer
PlasmaQuant MS Elite

PlasmaQuant MS Elite von Analytik Jena

Massenspektrometer für hochempfindliche Forschungsanwendungen und niedrigste Nachweisgrenzen

Die Erfolgsformel in der LC-ICP-MS – PlasmaQuant MS-Serie und PQ LC

ZSX Primus IVi

ZSX Primus IVi von Rigaku

Hochpräzise WDXRF-Analyse für industrielle Anwendungen

Maximale Empfindlichkeit und Durchsatz für leichte Elemente und komplexe Proben

Röntgenfluoreszenzspektrometer
NEX CG II

NEX CG II von Applied Rigaku Technologies

Elementaranalyse auf ppb-Niveau für exakte Ergebnisse

Röntgenfluoreszenzspektrometer
S2 PICOFOX

S2 PICOFOX von Bruker

Schnelle und präzise Spurenelementanalyse unterwegs

TXRF-Technologie für minimale Proben und maximale Effizienz

Totalreflexions-Röntgenfluoreszenzspektrometer
INVENIO

INVENIO von Bruker

FT-IR Spektrometer der Zukunft: INVENIO

Völlig frei aufrüstbares und konfigurierbares FT-IR Spektrometer

FT-IR-Spektrometer
Mikrospektrometer

Mikrospektrometer von Hamamatsu Photonics

Ultrakompaktes Mikrospektrometer für vielseitige Anwendungen

Präzise Raman-, UV/VIS- und NIR-Messungen in tragbaren Geräten

Mikrospektrometer
contrAA 800

contrAA 800 von Analytik Jena

contrAA 800 Serie – Atomic Absorption. Redefined

Kombiniert das Beste der klassischen Atomabsorption mit den Vorteilen von ICP-OES-Spektrometern

ICP-OES-Spektrometer
novAA®  800

novAA® 800 von Analytik Jena

Der Analysator für Sie - novAA 800-Serie

Das zuverlässige Multitalent für die effiziente und kostengünstige Routineanalyse

SPECORD PLUS

SPECORD PLUS von Analytik Jena

Die neue Generation der Zweistrahlphotometer von Analytik Jena

Der moderne Klassiker garantiert höchste Qualität

Micro-Z ULS

Micro-Z ULS von Rigaku

Schwefelgehalt in Kraftstoffen genau messen: WDXRF-Analysator

Zuverlässige Routineuntersuchungen mit 0,3 ppm Nachweisgrenze und kompaktem Design

WDXRF-Spektrometer
Biacore catalogue

Biacore catalogue von Cytiva

Einstieg in die Oberflächenplasmonenresonanz-Interaktionsanalyse - welches System ist das richtige für Sie?

Entdecken Sie einfachere und schnellere Oberflächenplasmonenresonanz (SPR) mit Biacore-Systemen

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios von Bios Analytique

Ihr Spezialist für Vermietung und Leasing von Laborinstrumenten in Europa

Beim Finanzieren geht es nicht nur ums Geld verleihen - Es geht um Lösungen, die Wert schaffen

Laborgeräte
Quantaurus-QY

Quantaurus-QY von Hamamatsu Photonics

Hochgeschwindigkeits-UV/NIR-Photolumineszenz-Spektrometer

Präzise Quantenausbeute-Messungen in Millisekunden ohne Referenzstandards

Fluoreszenzspektrometer
SPECTRO ARCOS

SPECTRO ARCOS von SPECTRO Analytical Instruments

Optisches Emissions-Spektrometer mit induktiv gekoppeltem Plasma (ICP-OES) für höchste Ansprüche

Das SPECTRO ARCOS ICP-OES bietet Elementanalytik auf einem neuen Niveau

ICP-OES-Spektrometer
Agera

Agera von HunterLab Europe

Sparen Sie wertvolle Zeit: Farb- und Glanzmessung in Rekordzeit

Erfassen Sie den Farbeindruck der Probe genau so, wie ihn das menschliche Auge wahrnimmt

Kolorimeter
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?