30 Jahre nach C60-Entdeckung: Käfigmolekül aus Silizium
Neue Verbindung eröffnet Perspektiven für Halbleiterindustrie
Die Entdeckung des fußballförmigen C60-Moleküls im Jahre 1985 war ein Meilenstein für die Entwicklung der Nanowissenschaften. Parallel zum schnell aufblühenden Forschungsgebiet der Kohlenstoff-Fullerene versuchten Forscher lange Zeit vergebens, strukturell ähnliche Siliziumkäfige darzustellen. Chemikern der Goethe-Universität ist es nun gelungen, eine Verbindung zu synthetisieren, die auf einem Si20-Dodekaeder aufbaut. Der in der Fachzeitschrift „Angewandte Chemie“ publizierte platonische Körper ist nicht nur ästhetisch reizvoll, sondern eröffnet auch neue Perspektiven für die Halbleiterindustrie.

Goethe-Universität Frankfurt am Main
Der Si20-Dodekaeder ist ungefähr so groß wie das C60-Molekül. Entscheidende Unterschiede bestehen jedoch zwischen den Bindungsverhältnissen: Alle Kohlenstoffatome des C60 sind dreifach koordiniert und bilden Doppelbindungen aus. Im Silizium-Dodekaeder sind dagegen alle Atome vierfach koordiniert und über Einfachbindungen verknüpft, so dass auch eine Verwandtschaft zum Dodekahedran (C20H20) besteht. „Das Dodekahedran galt seinerzeit als ‚Mount Everest‘ der Organischen Chemie, weil es zunächst nur über eine 23-stufige Synthesesequenz zugänglich war. Im Gegensatz dazu bildet sich unser Si20-Käfig, ausgehend von Si2-Bausteinen, in einem Schritt“, so Prof. Matthias Wagner vom Institut für Anorganische und Analytische Chemie der Goethe-Universität.
Die Si20-Hohlkörper, die sein Doktorand Jan Tillmann isoliert, sind stets mit einem Chlorid-Ion gefüllt. Die Frankfurter Chemiker vermuten daher, dass sich der Käfig um das Anion herum aufbaut und dieses somit einen strukturbestimmenden Einfluss ausübt. Auf seiner Oberfläche trägt der Cluster acht Chloratome und zwölf Cl3Si-Gruppen. Sie weisen hochsymmetrisch in den Raum, wodurch das Molekül eine besondere Schönheit gewinnt. Quantenchemische Rechnungen aus dem Arbeitskreis von Professor Max C. Holthausen an der Goethe-Universität belegen, dass das experimentell beobachtete Substitutionsmuster eine ausgeprägte Stabilisierung des Si20-Gerüsts bewirkt.
Künftig wollen Tillmann und Wagner mithilfe der oberflächengebundenen Cl3Si-Ankergruppen dreidimensionale Nanonetzwerke aus Si20-Einheiten herstellen. Insbesondere interessieren sich die Forscher jedoch für das Anwendungspotential der neuen Verbindung: „Räumlich strikt begrenzte Silizium-Nanopartikel zeigen fundamental andere Eigenschaften als konventionelle Siliziumwafer“, erläutert Matthias Wagner. Daher eröffnet der lange gesuchte Zugang zum Siladodekahedran die Möglichkeit, fundamentale elektronische Eigenschaften käfigartiger Si-Nanopartikel im Vergleich zu kristallinem Halbleitersilizium zu studieren.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.