Forschungszentrum Karlsruhe entwickelt Verfahren, um metallische von nichtmetallischen Nanoröhren zu trennen

08.07.2003

Kohlenstoff-Nanoröhren gelten als Schlüsselmaterialien der Nanotechnologie, insbesondere der Nanoelektronik. Bei der Herstellung der Nanoröhren entsteht aber immer ein Gemisch zweier verschiedener Typen von Röhrchen mit unterschiedlichen elektrischen Eigenschaften: Metalle und Halbleiter. Das stellte die Forscher bisher vor unlösbare Probleme und schränkte die Anwendung von Nanoröhren stark ein. Wissenschaftler aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe haben nun ein Verfahren entwickelt, mit dem sich Nanoröhren sortieren lassen. Dabei werden die metallischen von den halbleitenden Röhrchen in einem elektrischen Wechselfeld getrennt. Die nun sortenreinen Röhrchen stehen für weitere Anwendungen zur Verfügung. Die Forscher erwarten dadurch einen wichtigen Impuls für die Entwicklung der Nanoelektronik mit Kohlenstoff-Nanoröhren.

Im Jahr 1991 entdeckte eine japanische Forschergruppe, dass sich Kohlenstoffatome zu winzigen Röhrchen formen können, deren Wände nur eine Atomlage dick sind. Seitdem sind die "Nanoröhren" zu einem der wichtigsten Forschungsobjekte der Nanotechnologie geworden. Insbesondere in der molekularen Elektronik galten sie früh als Grundbausteine elektronischer Bauteile. Diese Erwartung erfüllte sich allerdings nur in Teilen, weil die Nanoröhren eine unangenehme Eigenschaft haben, die eine Verwendung in vielen Bereichen bisher verhinderte: Bei ihrer Herstellung entsteht ein Gemisch aus zwei Typen mit unterschiedlichen elektrischen Eigenschaften. Je nach Anordnung der Atome in den Wänden der Röhrchen verhalten sie sich entweder wie Metalle oder wie Halbleiter. Eine Trennung der beiden Typen war bisher nicht möglich.

Wissenschaftlern aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe ist es nun gelungen, ein Verfahren zu entwickeln, mit dem die Röhrchentypen getrennt werden können. "In einem elektrischen Wechselfeld mit einer Frequenz von 10 Millionen Hertz wandern die metallischen und halbleitenden Nanoröhren in entgegengesetzte Richtungen. Damit können die metallischen Röhrchen abgeschieden werden. Die nichtmetallischen verbleiben in der Lösung", erklären Dr. Ralph Krupke, Physiker, und Dr. Frank Hennrich, Chemiker, die das Problem in einem fächerübergreifenden Ansatz lösen konnten. "Der Trennmechanismus ist ein Nebenprodukt unserer eigentlichen Arbeit, die sich mit den elektrischen Eigenschaften von Nanoröhren beschäftigt. Wir haben dabei festgestellt, dass wir zwischen unseren Elektroden immer nur einen der beiden Röhrchentypen, nämlich den metallischen, einfangen konnten. Das brachte uns auf die Idee, dies zu einer Methode zum Trennen der Röhrchentypen auszubauen."

Das Verfahren lässt sich in drei Schritte aufteilen: Zunächst wird eine wässrige Lösung hergestellt, in der die Röhrchen einzeln vorliegen, das heißt keine "Klumpen" bilden. Diese Lösung wird nun in ein ungleichförmiges (inhomogenes) elektrisches Wechselfeld gebracht. Aufgrund der unterschiedlichen elektrischen Eigenschaften der metallischen und der halbleitenden Röhrchen werden sie in entgegengesetzte Richtungen gezogen (durch so genannte Dielektrophorese) und können abgeschieden werden. Eine anschließende Analyse der Materialeigenschaften (durch Raman-Spektroskopie) zeigt, dass ausschließlich metallische Nanoröhrchen abgeschieden wurden; die nichtmetallischen verblieben in der Lösung.

Das Verfahren wurde vom Forschungszentrum zum Patent angemeldet. Im nächsten Schritt soll es für die Trennung größerer Mengen von Röhrchen weiterentwickelt werden.

Die wissenschaftliche Arbeit wird in einer der nächsten Ausgaben der renommierten amerikanischen Zeitschrift "Science" erscheinen und wurde wegen ihrer Bedeutung schon vorab in "Science Express" veröffentlicht (R. Krupke, F. Hennrich, H. v. Löhneysen and M. M. Kappes: Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes).

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren