Meine Merkliste
my.chemie.de  
Login  

Stahlerzeugung



   

Ziel der Stahlerzeugung ist es, Stahl, also Eisenlegierungen mit geringem Kohlenstoffgehalt und gewünschten Eigenschaften wie Härte, Rostbeständigkeit oder Verformbarkeit, herzustellen.

Ein Stahlwerk ist eine Fabrik in der Metallindustrie, die zumeist mittels Hochöfen Roheisen und aus dem Roheisen dann Stahl produziert. Die Mitarbeiter eines Stahlwerks werden Stahlwerker oder Stahlkocher genannt.

Mehr dazu bei Stahlindustrie

Inhaltsverzeichnis

Verfahren

Bei der Stahlerzeugung werden unterschiedliche Verfahren angewendet.

Das verbreitetste Verfahren ist das LD- oder Sauerstoffaufblas-Verfahren. In den LD-Konverter werden flüssiges Roheisen und Stahlschrott eingefüllt und Schlackenbildner hinzugegeben. Über eine Lanze wird Sauerstoff auf die Schmelze geblasen. Dabei verbrennen im Stahl unerwünschte Begleitelemente wie Schwefel, Phosphor, Kohlenstoff usw. und gehen in das Rauchgas oder die Schlacke über. Durch die mit der Verbrennung verbundene enorme Wärmeentwicklung wird der beigegebene Schrott aufgeschmolzen.

Daneben gibt es Elektrostahlwerke mit Elektrolichtbogenöfen. Darin wird Schrott über drei Elektroden erhitzt, bis der Stahl flüssig ist. Ein Schmelzprozess dauert ca. 30 Minuten.

Die typische Chargengröße beträgt 100–150 t. Der Rohstahl wird in eine Stahlgießpfanne abgegossen.

In der Sekundärmetallurgie wird die Schmelze für das Gießen fertig behandelt. (Pfannenofen, Vakuumanlage).

Der Stahl wird dann in die sogenannte Kokille abgegossen. Diese Kokille kann auch aus Elementen bestehen, die einen kleinräumigen Kanal (= Kokille ) für das Strangguss-Verfahren bilden. Dies ermöglicht dann, von der Hitze des Gießprozesses möglichst viel für das nachfolgende Umformen oder Walzen zu verwenden (Integriertes Stahlwerk).

Bei der Stahlerzeugung entsteht Schlacke als Nebenprodukt.

Beispiel eines Stahlwerkes: das ehemalige Krupp-Hüttenwerk Rheinhausen.

Hochofenroute

Bei diesem Verfahren wird zuerst Roheisen aus Eisenerz und Koks hergestellt. Außerdem kann zusätzlich Schrott eingesetzt werden. Danach wird durch weitere Verfahren aus Roheisen Stahl hergestellt.

Die Roheisenherstellung aus Eisenerz erfolgt gegenwärtig üblicherweise mit einem Hochofen. Das Eisenerz wird zunächst gesintert, um eine geeignete Stückigkeit einzustellen. Der Sinter wird mit Kalkstein und Koks zum Möller vermischt und anschließend in den Hochofen chargiert. Der Hochofen ist ein metallurgischer Reaktor, in dem im Gegenstrom die Möllersäule mit heißer Luft, dem so genannten Wind, reagiert. Durch Verbrennen des Kohlenstoffs aus dem Koks entstehen die für die Reaktion nötige Wärme und Kohlenmonoxid, das die Möllersäule durchströmt und das Eisenoxid reduziert. Als Ergebnis entstehen Roheisen und Schlacke, die periodisch abgestochen werden.

Da das Roheisen sehr viel Kohlenstoff enthält, muss es einen weiteren Prozessschritt durchlaufen. Durch Aufblasen von Sauerstoff, dem so genannten Frischen, wird der Kohlenstoff oxidiert und es entsteht flüssiger Stahl. Nach dem Zulegieren der gewünschten Elemente wird er im Strang oder in der Kokille zu Halbzeug vergossen. Das Vergießen bedarf besonderer Techniken, man unterscheidet zwischen beruhigtem und unberuhigt vergossenen Stahl (unter Beruhigen versteht man das Binden des in der Schmelze gelösten Sauerstoffs durch Zulegieren von Aluminium oder Silizium). Dies hat Einfluss auf im erkaltenden Stahl entstehende Seigerungen (Materialentmischungen, z. B. Schwefelablagerungen) oder Lunker (durch das Schwinden des Materials bedingte Hohlräume). Beide sind mit Qualitätsverlusten verbunden.

Direktreduktion

Die Nachteile des Hochofens sind die Anforderungen an die Einsatzmaterialien und der hohe Ausstoß an Kohlendioxid. Der eingesetzte Eisenträger und der Koks müssen stückig und hart sein, sodass genügend Hohlräume in der Möllersäule bestehen bleiben, die das Durchströmen durch den eingeblasenen Wind gewährleisten. Der CO2-Ausstoß stellt eine starke Umweltbelastung dar. Deshalb gibt es Bestrebungen, die Hochofenroute abzulösen. Bisher hat sich aber kein Verfahren gegenüber dem Hochofen etablieren können. Zu nennen sind hier die Eisenschwamm- und Pelletherstellung in Drehrohröfen sowie die Corex-, Midrex- und Finex-Verfahren.

Am weitesten verbreitet sind bisher das Midrex - bzw HYL-Direktreduktionsverfahren, die Eisenschwamm bzw. HBI (Hot Briquetted Iron) als festes Einsatzmaterial erzeugen. Dieses ist immer noch mit einer gewissen Menge von Gangart des Ausgangserzes belastet, aber der Kohlenstoffgehalt ist normalerweise nicht höher als 1 %. Das Corex-Verfahren ist neueren Datums und erzeugt ein flüssiges, roheisenähnliches Vormaterial, dessen Kohlenstoffgehalt bei ca. 3,5 bis 4 % liegt.

Stahlherstellungsverfahren

Man kann zwischen so genannten Blasverfahren und Herdfrischverfahren unterscheiden.

Bei den Blasverfahren wird das Roheisen mit Sauerstoff oder Luft gefrischt. Der Oxidationsprozess, der den Kohlenstoffanteil senkt (das Frischen), liefert in diesen Verfahren genug Wärme, um den Stahl flüssig zu halten, eine externe Wärmezufuhr ist in den Konvertern deshalb nicht notwendig. Die Blasverfahren kann man zusätzlich in Aufblasverfahren und Bodenblasverfahren unterteilen. Zu den Bodenblasverfahren gehören das Bessemerverfahren, das Thomasverfahren, die Rennfeuer und frühe Hochöfen. Das bekannteste Aufblasverfahren ist das LD Verfahren.

Bei den Herdfrischverfahren wird der zur Oxidation notwendige Sauerstoff dem zugesetzten Schrott und Erz entnommen. Außerdem muss den Herdfrischkonvertern extern Wärme zugeführt werden. Die bekanntesten Herdfrischverfahren sind das Siemens-Martin-Verfahren und der Elektroofenprozess.

In moderner Zeit wird Stahl zunehmend in integrierten Stahlwerken hergestellt, die die Roheisenherstellung, die Stahlproduktion und die Halbzeug-Fabrikation in einem Werk integrieren, um Transporte, Energie und damit Kosten zu sparen.

Historische Verfahren

Meteoreisen

Ursprünglich wurde das Eisen von Eisenmeteoriten verarbeitet. In Lehmöfen, die mit Holzkohle und Luft, durch Blasebalge, beschickt wurden, konnten enorme Temperaturen erreicht werden. 1300–1600 °C waren nötig, um die Eisen-Nickel-Legierung, die in den Meteoren enthalten ist (80–95 % Eisen), herauszuschmelzen.

Rennfeuer

Ca. 1500 v. Chr wurden die ersten Rennöfen gebaut. Diese sind Lehmöfen, in die Holzkohle und Eisenerz schichtweise eingebracht wurden. Im Rennofen entstehen Temperaturen zwischen etwa 1200 und 1300 °C, die das taube Gestein aufschmelzen und als Schlacke ablaufen lassen. Daher stammt auch der Name: Rennen von Rinnen. Das Eisen wird durch die Holzkohle reduziert. Es entsteht eine von Schlacketeilchen durchsetzte Luppe, die durch Schmieden weiterverarbeitet werden kann.  

Stück- oder Wolfsofen

Ab etwa dem 12. Jahrhundert wurden die Öfen nicht mehr in die Erde sondern oberirdisch gebaut (Vorläufer der Hochöfen) und zusätzlich durch wassergetriebene Blasebälge mit Luft versorgt. Auch wurde der Stahl mit wassergetriebenen Hammerwerken bearbeitet.

Gussstahl

Das Roheisen wird im seit 1842 angewendeten Gussstahlverfahren zusammen mit Schrott geschmolzen. Der Sauerstoffanteil im Schrott frischt das Roheisen und verbessert somit die Qualität des Stahls.

Puddle-Verfahren

Das Puddle-Verfahren wurde im Jahre 1784 von Henry Cord in England erfunden. Dabei wird die schon zäh werdende Roheisenmasse mit Stangen gewendet, so dass möglichst viel der Oberfläche mit der Umgebungsluft in Berührung kommen kann. Durch diesen Sauerstoffkontakt wird das Roheisen gefrischt und so zu Stahl verarbeitet (siehe auch Eiffelturm, Griethausener Eisenbahnbrücke).

Thomas- und Bessemerverfahren, DSN-Verfahren

  Diese sind Konverterverfahren, bei denen durch Bodendüsen des Konverters Gase in die Roheisenschmelze gedrückt werden. Die Thomas- und Bessemerverfahren verwenden Luft, im DSN-Verfahren (Dampf-Sauerstoff-Neunkirchen) wird Sauerstoff zusammen mit Wasserdampf statt Luft eingesetzt. Das auch „saures Windfrischverfahren“ genannte Bessemerverfahren wurde 1855 von Henry Bessemer entwickelt. Das Thomasverfahren (auch „basisches Windfrischverfahren“ genannt und bekannt durch die Konverterform: die Thomasbirne) wurde 1878 von Percy Gilchrist und Sidney Thomas erfunden. Sie unterscheiden sich durch die Ausmauerung des Ofens, welche entweder sauer oder basisch wirkt und so verschiedene Eigenschaften aufweist (im Thomasverfahren eine Dolomit-Teer-Mischung).

OBM-Verfahren

Im OBM-Verfahren (Oxygen-Bottom-Maxhütte oder Oxygen-Bodenblas-Metallurgie-Verfahren) werden Sauerstoff und Butan oder Propan durch den Boden des Konverters eingeblasen. Das Verfahren wurde im Stahlwerk Maxhütte entwickelt, woher sich der Name ableitet.

Es ist eine Methode der Stahlerzeugung, bei der durch wassergekühlte Bodendüsen Sauerstoff in die Schmelze geblasen wird und die Elemente Silicium, Mangan, Kohlenstoff und Phosphor verbrannt werden. Der Schwefel wird mit Kalzium und den gebildeten Oxiden in der Schlacke gebunden.

Die Ausgangsstoffe sind Roheisen, Kühlschrott, Zuschläge, Propan bzw. Methan. Die Reaktionsprodukte sind Rohstahl und Schlacke.

Mit der Stilllegung der Neuen Maxhütte in Sulzbach-Rosenberg im Jahr 2003 ist der einzige deutsche OBM Konverter stillgelegt worden. In Charleroi (Belgien) existieren OBM Konverter im Stahlwerk Duferco Carsid.

Siemens-Martin-Verfahren

Dieses war die bevorzugte Stahlherstellungsmethode, von seiner Erfindung 1864 durch Friedrich Siemens und Wilhelm Siemens und seiner Umsetzung zusammen mit Pierre-Émile Martin, bis in die erste Hälfte des 20. Jahrhunderts. Der SM-Ofen besteht aus dem Oberofen, mit dem vom Gewölbe überspanntem Schmelzraum und dem Unterofen. Im Oberofen wird flüssiges Roheisen, Roheisenmasseln oder der Schrott chargiert. Im Unterofen sind die Regenerationskammern zur Luft- und Gasvorwärmung untergebracht. Im Oberofen wird mit öl- oder gasbetriebenen Brennern der Schmelzraum beheizt. Die Reduktion des Kohlenstoffs (Frischen) erfolgt durch den Sauerstoffüberschuss der Brennerflamme oder durch Zugabe von Eisenerz. Das Verfahren wurde inzwischen durch Sauerstoffblasverfahren verdrängt. 1993 wurde in Brandenburg an der Havel der letzte deutsche SM-Ofen stillgelegt. Er ist heute als technisches Denkmal erhalten.

Aktuelle Verfahren

Linz-Donawitz-Verfahren

Im Linz-Donawitz- oder LD-Verfahren wird durch eine Lanze Sauerstoff auf das Schmelzbad im Konverter geblasen, so werden unerwünschte Begleitstoffe oxidiert und können dann als Schlacke abgestochen werden. Durch Zugabe von Schrott und Erz kann der Roheiseneinsatz verringert und die Schmelze gekühlt werden. In den Konverter muss flüssiges Roheisen chargiert werden, da das Verfahren die Einsatzstoffe nicht aufschmelzen kann. Der fertige Stahl wird durch Kippen des Konvertergefäßes in Pfannen abgestochen. Das Verfahren ist benannt nach den Standorten Linz und Donawitz der österreichischen Unternehmen VÖEST und Alpine Montan – beide inzwischen fusioniert zur voestalpine – die dieses Verfahren entwickelten. Inzwischen existieren mehrere Varianten des LD-Verfahrens, bei dem etwa gleichzeitig Sauerstoff und anschließend Argon durch Bodendüsen eingeleitet werden (LBE, Lance Bubbling Equilibrium).

Elektrostahlverfahren

Bei den Elektrostahl-Verfahren wird die zum Schmelzen erforderliche Wärme durch einen Lichtbogen oder durch Induktion erzeugt.

Der Lichtbogenofen wird mit Schrott, Eisenschwamm und Roheisen beschickt. Außerdem werden noch Kalk zur Schlackenbildung und Reduktionsmittel zugegeben. Der von den Graphitelektroden zum Schmelzgut verlaufende Lichtbogen erzeugt Temperaturen bis zu 3500 °C. Deshalb können auch schwer schmelzbare Legierungselemente wie Wolfram und Molybdän als Ferrolegierungen eingeschmolzen werden.

Mit Lichtbogenöfen können alle Stahlsorten hergestellt werden.

Corexverfahren

Der COREX-Prozess ist ein zweistufiges Schmelzreduktionsverfahren („smelting-reduction“), in dem Roheisen auf Basis nicht verkokter Kohle und Eisenerzen hergestellt werden kann. Ziel des Schmelzreduktionsverfahren ist es, durch die Kombination von Schmelzprozess, Kohlevergasung und Direktreduktion flüssiges Eisen zu erzeugen, dessen Qualität dem Hochofenroheisen entspricht. Die Schmelzreduktion kombiniert den Prozess der Direktreduktion (Vorreduktion von Eisen zu Eisenschwamm) mit einem Schmelzprozess (Hauptreduktion). Der Prozess läuft also zweistufig in getrennten Aggregaten ab. Zuerst werden die Erze zu Eisenschwamm reduziert, im zweiten Schritt erfolgt die Endreduktion und das Aufschmelzen zu Roheisen. Die für den Schmelzvorgang nötige Energie liefert die Verbrennung von Kohle (nicht verkokt). Dabei entstehen große Mengen Kohlenmonoxid als Abgas, das als Reduktionsgas genutzt wird.

Die größten Stahlproduzenten

Das bedeutendste Herstellerland für Stahl ist China, gefolgt von Japan und den USA. In Europa sind die drei wichtigsten Produzenten Russland, Deutschland, Italien. Weltweit lag Duisburg bei der Stahlerzeugung lange Zeit an erster Stelle. Dort befinden sich die modernsten und produktivsten Hochöfen. Mittlerweile ist Shanghai an die erste Stelle der Stahlerzeugung aufgerückt.

Die zehn weltgrößten, stahlproduzierenden Unternehmen

(gemessen an der Erzeugung in Jahrestonnen Rohstahl)

  • Mittal Steel Company N.V. (Niederlande, USA, Ukraine) 60,9 Mio. t

fusioniert mit Arcelor (Luxemburg) 45,2 Mio. t

  • Nippon Steel (Japan) 32,4 Mio. t
  • JFE GroupHolding (Japan) 31,6 Mio. t
  • Posco (Südkorea) 30,2 Mio. t
  • Shanghai Baosteel (Volksrepublik China) 21,4 Mio. t
  • US Steel (USA) 20,8 Mio. t
  • Corus (Niederlande, Großbritannien) 19 Mio. t
  • Deutsche Edelstahlwerke GmbH (Deutschland) 18,6 Mio. t
  • Nucor (USA) 17,9 Mio. t
  • ThyssenKrupp (Deutschland) 17,6 Mio. t

Die Daten wurden auf Basis des Internationalen Eisen- und Stahlinstituts zusammengestellt und schließen Mittals Erwerb der amerikanischen ISG 2005 ein. Sie weichen zum Teil von den Daten der deutschen Wirtschaftsvereinigung Stahl ab. Dofasco wird bis zur endgültigen Klärung der zukünftigen Zugehörigkeit separat erfasst.

Siehe auch

Weitere Tabellen zu Produktionsdaten:

 
Dieser Artikel basiert auf dem Artikel Stahlerzeugung aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.