23.04.2009 - Cornell University

Auf den Spuren organischer Materie

Forscher finden zwei neue, hochkomplexe Moleküle im Weltraum

Einem internationalen Team von Wissenschaftlern vom Max-Planck-Institut für Radioastronomie in Bonn, der Cornell-Universität (Ithaka/USA) und der Universität Köln haben zum ersten Mal zwei neue Moleküle im interstellaren Raum nachgewiesen, Äthylformiat und n-Propylzyanid. Computermodelle zeigen, dass vermutlich noch komplexere organische Moleküle vorhanden sein müssen - darunter auch noch nicht identifizierte Aminosäuren, die Grundbausteine des Lebens.

Die Wissenschaftler nutzten das IRAM-30m-Teleskop in Spanien zum Nachweis der Radiostrahlung von Molekülen im Sternentstehungsgebiet Sagittarius B2 in der Nähe des Zentrums unserer Milchstraße. Die beiden neuen Moleküle wurden in einer heißen dichten Gaswolke aufgefunden, die unter dem Namen "Large Molecule Heimat" bekanntgeworden ist und einen sehr leuchtkräftigen gerade erst entstandenen Stern in ihrem Inneren enthält. In dieser Gaswolke konnte bereits eine ganze Reihe von unterschiedlichen großen organischen Molekülen nachgewiesen werden, darunter Alkohole, Aldehyde und Säuren. Die beiden neugefundenen Moleküle, Äthylformiat (C2H5OCHO) und n-Propylzyanid (C3H7CN), repräsentieren zwei unterschiedliche Klassen von Molekülen - Ester und Alkylzyanide - und stellen jeweils die komplexesten bisher im Weltraum entdeckten Vertreter ihrer Klasse dar.

Atome und Moleküle senden Strahlung bei ganz speziellen Frequenzen aus, die als charakteristische "Linien" im elektromagnetischen Spektrum einer astronomischen Quelle erscheinen. Die Entschlüsselung der Signatur eines bestimmten Moleküls im Spektrum ist dabei vergleichbar mit der Identifikation eines Menschen anhand seiner Fingerabdrücke. "Das Problem bei der Suche nach komplexen Molekülen liegt darin, dass die am besten geeigneten astronomischen Quellen so viele unterschiedliche Moleküle enthalten, dass ihre "Fingerabdrücke" überlappen und nur sehr schwer zu entwirren sind", sagt Arnaud Belloche, Wissenschaftler am Max-Planck-Institut für Radioastronomie. "Die größeren und komplexeren Moleküle sind sogar noch schwieriger zu identifizieren, da ihre "Fingerabdrücke" kaum sichtbar werden: Ihre Strahlung wird über eine viel größere Anzahl von Linien verteilt, die alle viel schwächer herauskommen", ergänzt Holger Müller von der Universität Köln. Von den insgesamt 3700 Spektrallinien, die mit dem IRAM-Teleskop gefunden wurden, konnte das Forschungsteam 36 Linien mit den beiden neuen Molekülen identifizieren.

Die Forscher haben anschließend Computer-Modellrechnungen dafür eingesetzt, die chemischen Prozesse zu verstehen, die zur Bildung solcher Moleküle im Weltraum führen. Chemische Reaktionen erfolgen als Resultat von Kollisionen zwischen Gaspartikeln. Ebenso befinden sich Staubkörner als Bestandteile im interstellaren Gas, auf deren Oberfläche Reaktionen zwischen einzelnen Atomen stattfinden können, die Moleküle bilden. Als Ergebnis davon bauen sich um die Staubkörner dicke Eisschichten auf. Sie bestehen hauptsächlich aus Wasser, enthalten aber auch Einschlüsse einer Reihe von einfachen organischen Molekülen wie zum Beispiel Methanol, dem einfachsten Alkohol.

"Aber die wirklich großen Moleküle scheinen sich nicht auf diese Weise, nämlich Atom für Atom, aufzubauen", sagt Robin Garrod, ein Astrochemiker an der Cornell-Universität. Stattdessen lassen die Computermodelle vermuten, dass die komplexeren Moleküle abschnittsweise aufgebaut werden. Dabei kommen vorgefertigte Teilabschnitte zum Einsatz, die durch Moleküle bereitgestellt werden, die schon auf den Staubkörnern vorhanden sind. Die Computermodelle zeigen, dass diese Abschnitte oder "funktionalen Gruppen" sich sehr wirksam miteinander verbinden können, um so ganze "Molekülketten" in einer Serie von kurzen Schritten zusammenzubauen. Die beiden neu entdeckten Moleküle sind vermutlich auf diese Art entstanden.

"Es gibt anscheinend keine Begrenzung für die Größe der Moleküle, die durch diesen Prozess erzeugt werden können - wir erwarten sogar noch komplexere Moleküle, wenn wir sie überhaupt nur entdecken können." sagt Garrod. Karl Menten, Direktor am Max-Planck-Institut für Radioastronomie und ebenfalls Mitglied des Forschungsteams, erwartet solche Entdeckungen bereits in naher Zukunft. "Was wir im Moment machen, ist ein bisschen so wie die Suche nach der Stecknadel im Heuhaufen.

Zukünftige Forschungsinstrumente wie das Atacama Large Millimeter Array werden noch effizientere Beobachtungsprogramme möglich machen, mit denen weitere organische Moleküle im interstellaren Raum gefunden werden können." Vielleicht sogar die Entdeckung von Aminosäuren, die für die Erzeugung von Proteinen benötigt werden und damit unverzichtbar sind für die Entstehung des Lebens auf der Erde.

Nach der einfachsten Aminosäure, Glyzin (NH2CH2COOH), wurde bereits wiederholt im Weltraum gesucht; sie konnte allerdings bis jetzt noch nicht nachgewiesen werden. Allerdings sind beide hier beschriebenen neu entdeckten Moleküle von Größe und Komplexität her durchaus mit Glyzin vergleichbar.

Originalveröffentlichung: A. Belloche et al.; "Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)"; Astronomy & Astrophysics (im Druck)

Fakten, Hintergründe, Dossiers
  • IRAM
  • Aminosäuren
  • Wasser
Mehr über Cornell University
Mehr über Max-Planck-Gesellschaft
Mehr über Uni Köln
  • News

    Energiewende: Solarzellen der nächsten Generation werden immer effizienter

    Ein Forschungsteam hat eine Tandem-Solarzelle aus Perowskit und organischen Absorberschichten mit hoher Effizienz entwickelt, die kostengünstiger herzustellen ist als herkömmliche Solarzellen aus Silizium. Die Weiterentwicklung dieser Technologie soll eine noch nachhaltigere Gewinnung von S ... mehr

    Neuartiger Sensor reagiert hochempfindlich auf Atome und Moleküle

    Einem internationalen Forschungsteam unter Leitung der Universität zu Köln ist es erstmals gelungen, mehrere „atomar präzise“ Nanostreifen aus Graphen, einer Modifikation aus Kohlenstoff, miteinander zu komplexen Strukturen zu verbinden. Die Streifen konnten die Wissenschaftler in ein elekt ... mehr

    40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

    Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit entdeckt, Propylen in Propylenoxid, eine wichtige Grundchemikalie in der Chemieindustrie, umzuwandeln. Jetzt hat ein Wissenschaftlerteam der ETH Zürich, der Universität ... mehr

  • q&more Artikel

    Goldplasma macht unsichtbare Strukturen sichtbar

    Die Mikro-Computertomographie (μCT) ist in den letzten Jahren zu einer Standardmethode in vielen medizinischen, wissenschaftlichen und industriellen Bereichen geworden. Das bildgebende Verfahren ermöglicht die zerstörungsfreie, dreidimensionale Abbildung verschiedenster Strukturen. mehr

  • Autoren

    Peter T. Rühr

    Peter T. Rühr, Jahrgang 1988, studierte Biologie mit Schwerpunkt auf der Kopfmorphologie von Ur-Insekten am Zoologischen Forschungsmuseum Alexander Koenig und an der Rheinischen Friedrich-Wilhelms-Universität Bonn, wo er 2017 seinen Masterabschluss erhielt. Seit 2018 promoviert er an der Un ... mehr

Mehr über Institut de RadioAstronomie Millimétrique
Mehr über MPI für Radioastronomie
  • News

    Erstes Molekül des Universums gefunden

    Das Heliumhydrid-Ion HeH+ war das erste Molekül, das im noch jungen Universum vor knapp 14 Milliarden Jahren entstand, als fallende Temperaturen die ersten chemischen Reaktionen der im Urknall entstandenen leichten Elemente ermöglichten. Zu dieser Zeit verbanden sich auch ionisierter Wasser ... mehr

    Interstellares Molekül mit verzweigtem Rückgrat

    Im Weltall existiert eine große Vielzahl organischer Moleküle. Eines davon, iso-Propylcyanid (i-C3H7CN), haben Wissenschaftler jetzt in der Gaswolke Sagittarius B2 gefunden, einer Region heftiger Sternentstehung in unmittelbarer Nähe zum Zentrum unserer Milchstraße. Die verzweigte Struktur ... mehr

    Alkoholtest im All

    Das Massenverhältnis von Protonen zu Elektronen gilt als Naturkonstante. Und dies zu recht, wie neueste radioastronomische Beobachtungen einer fernen Galaxie gezeigt haben. Mit dem 100-Meter-Radioteleskop in Effelsberg haben Wissenschaftler der VU-Universität Amsterdam und des Max-Planck-In ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Radioastronomie

    Das Max-Planck-Institut für Radioastronomie gehört zu den 80 eigenständigen Forschungsinstituten der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hauptarbeitsgebiete sind die Radio- und Infrarot-Astronomie. Die technologischen Entwicklungen im Institut umspannen den gesamt ... mehr