Gemeinsam Fließen statt einsam Hüpfen - Neutronen untermauern neue Theorie über Bewegung in der Zellmembran

25.02.2010 - Deutschland

Moleküle in einer Zellmembran bewegen sich fließend im Verbund statt als Einzelgänger in frei werdende Leerstellen zu hüpfen. Das haben Sebastian Busch und Dr. Tobias Unruh am Neutronenspektrometer TOFTOF (time-of-flight time-of-flight) an der Neutronenquelle der Technischen Universität München (TUM) mit Daten belegt. Ihre Messungen, die sie im "Journal of the American Chemical Society" veröffentlicht haben, klären ein jahrzehntelanges Rätsel und untermauern erstmals experimentell eine neue Theorie der Molekülbewegung.

Immer wieder sahen sich Sebastian Busch und der Betreuer seiner Doktorarbeit an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM, Tobias Unruh, eine Simulation der Molekülbewegungen in einem Film auf YouTube an: "Die hüpfen ja gar nicht!" Und genau das behaupten auch die finnischen Biophysiker um Ilpo Vattulainen, die die Zellmembran per Computer simuliert und die Simulation auf YouTube gestellt haben.

Biophysiker haben jahrelang an ein falsches Modell geglaubt: Statt sich hüpfend einzeln von Leerstelle zu Leerstelle vorwärts zu bewegen, fließen die Phospholipide der Membran im Verbund. Jahrzehntelang gab es einen Streit zwischen den Wissenschaftlern, die Zellmembranbewegungen unter dem Mikroskop im Mikrometermaßstab beobachteten und den Neutronenstreuern, die die Molekülbewegung im Nanometerbereich vermessen können. Unter dem Mikroskop sah es so aus, als ob sich die Phospholipide sehr langsam in der Zellmembran bewegten, mit Neutronen wurden Bewegungen gemessen, die 100 Mal so schnell waren. Diesen scheinbaren Widerspruch erklärte man schließlich mit der Theorie, dass sich die Moleküle in einem Käfig aus den benachbarten Molekülen eingeschlossen so lange schnell hin und her bewegen, bis sich ein freier Platz bietet, in den das Molekül hinein hüpfen kann. Weil derartige Sprünge relativ selten auftreten, sieht man im Mikrometermaßstab eine langsamere Bewegung, so die Theorie.

"Nie hat jemand diese Theorie des Hüpfens mit Messungen belegen können", sagt der Chemiker Tobias Unruh. Auch Sebastian Busch wusste nicht, wie er seine Messungen an einer Phospholipidmembran am Neutronenspektrometer TOFTOF interpretieren sollte. Die Daten passten einfach nicht zum Modell. Da sah er die Simulation der finnischen Biophysiker, und informierte sich genauer vor Ort an der Universität in Helsinki. Der 27-Jährige, der am Lehrstuhl von Professor Dr. Winfried Petry im Physik-Department der TUM promoviert, reizte daraufhin bei ergänzenden Messungen die Leistungsfähigkeit des Spektrometers in Garching voll aus. "Da ist mir klar geworden, dass ich die Theorie der Finnen mit Daten untermauern kann", sagt Sebastian Busch. Schließlich konnte er die fließende Bewegung der Moleküle mit seinen Experimenten belegen. Die Zellmembranmoleküle bewegen sich dabei ähnlich wie Personen in einer Menschenmasse: Nur wenn mehrere im Verbund in eine Richtung drängen, kommt auch das Individuum vorwärts. Ein einsames Hüpfen der Moleküle gibt es also nicht, nur ein gemeinsames Fließen.

Als Probe untersuchte der Physiker ein typisches Phospholipid, Dimyristoylphosphatidylcholin (DMPC), hydriert mit schwerem Wasser. Die Bewegung der Zellmembran wurde in Zeitabständen von 35 bis 1000 Billionstel Sekunden bei 30 °C beobachtet. Im Spektrometer TOFTOF werden Neutronen mit einer genauestens bekannten Geschwindigkeit ausgewählt. Sie treffen auf die Probe und interagieren mit den Atomkernen. Wenn diese in Bewegung sind, ändern die Neutronen ihre Geschwindigkeit, was in einem Detektor gemessen wird. "Wir haben hier weltweit das einzige Spektrometer, das mit einer so großen Genauigkeit diese kleinen Bewegungen auf der Nanoskala messen kann", sagt Tobias Unruh.

Nun werden Tobias Unruh und Sebastian Busch untersuchen, wie sich die Bewegungen der Phospholipide verändern, wenn sie verschiedene Stoffe beimengen. Solche Mischungen werden in Arzneimitteln verwendet. Geeignete Zusätze können die Haltbarkeit der Stoffe drastisch erhöhen. Die TUM-Wissenschaftler interessiert vor allem, welchen Einfluss die Molekülbewegungen auf diesen stabilisierenden Effekt haben. "Wenn wir den Stabilisierungsmechanismus im Detail verstehen", hofft Tobias Unruh, "können zukünftig für die jeweilige Anwendung optimierte Mischungen vorgeschlagen werden."

Originalveröffentlichung: S. Busch, C. Smuda, L.C. Pardo Soto, T. Unruh; "Molecular Mechanism of Long-Range Diffusion in Phospholipid Membranes Studied by Quasielastic Neutron Scattering"; Journal of the American Chemical Society, Publication Date 2010.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Zuletzt betrachtete Inhalte

Rhodia Polyamide beschließt globale Preiserhöhung von 6% bis 9% aufgrund außergewöhnlich steigender Energiekosten

Chemiker steigern Leistung umweltfreundlicher Batterien durch Katalysatoren mit unkonventionellen Phasen-Nanostrukturen - "Diese Studie zeigt das große Potenzial der Phasentechnik von Katalysatoren in der Metall-Gas-Elektrochemie"

Chemiker steigern Leistung umweltfreundlicher Batterien durch Katalysatoren mit unkonventionellen Phasen-Nanostrukturen - "Diese Studie zeigt das große Potenzial der Phasentechnik von Katalysatoren in der Metall-Gas-Elektrochemie"

Neue Forschungen zeigen, wie die komplexe Chemie für den Ursprung des Lebens relevant sein kann

Neue Forschungen zeigen, wie die komplexe Chemie für den Ursprung des Lebens relevant sein kann

Chemservice und Songwon gründen „Chemservice Asia Company Ltd.“, eine gemeinsame Beratungsfirma für Regulierungsfragen

Gebaut für die Ewigkeit: Neuer Copolymer-Binder zur Verlängerung der Lebensdauer von Lithium-Ionen-Batterien - Wissenschaftler entwickeln ein neuartiges Bindermaterial, das die Graphitanode von Li-Ionen-Batterien auch nach 1700 Zyklen vor Degradation schützt

Gebaut für die Ewigkeit: Neuer Copolymer-Binder zur Verlängerung der Lebensdauer von Lithium-Ionen-Batterien - Wissenschaftler entwickeln ein neuartiges Bindermaterial, das die Graphitanode von Li-Ionen-Batterien auch nach 1700 Zyklen vor Degradation schützt

ChemBridge Corporation geht mit AstraZeneca neue strategische Allianz im Bereich der chemischen Forschung ein

MediGene erhält US-Patent für Verfahren zur Herstellung von Impfstoff gegen Gebärmutterhalskrebs

Analytikdienstleistungen von Orga Lab für Industrie und Gewerbe jetzt auch ISO 9001 zertifiziert

Otto von Guericke-Preis für neues Verfahren zur Identifizierung von Miroben verliehen

Merck, Applied Materials und die Universität Braunschweig erhalten Fördergelder für die OLED-Forschung

Das Britische Handelsministerium investiert 500 Mio. Pfund in ein neues Institut für Energietechnologien

Jobvector career day: Karrieremesse für Naturwissenschaftler, Mediziner, Informatiker & Ingenieure in München

Jobvector career day: Karrieremesse für Naturwissenschaftler, Mediziner, Informatiker & Ingenieure in München