06.03.2018 - Technische Universität Graz

Lichtaktive Mikroalgen als Bio-Katalysatoren

Die biokatalytische Herstellung von Chemikalien soll erheblich nachhaltiger werden

Ein blaugrüner Algenteppich kann das sommerliche Badevergnügen am See wörtlich „trüben“: Ursache sind einige Stämme von photosynthetisch aktiven Mikroalgen, auch Cyanobakterien genannt. Andere Stämme von Cyanobakterien, welche für den Menschen harmlos sind, haben ein großes Potential für biotechnologische Anwendungen und sind deswegen heiß begehrt.

Im EU-Projekt PhotoBioCat nutzen internationale Doktoranden unter Expertenanleitung den „Treibstoff“ Licht um enzymatische Reaktionen etwa mittels Cyanobakterien zu beschleunigen. Damit soll die biokatalytische Herstellung von Chemikalien erheblich nachhaltiger werden. Koordiniert wird das kürzlich gestartete Projekt von einem Team rund um Robert Kourist, Leiter des Instituts für Molekulare Biotechnologie der TU Graz, auch das Institut für Chemie der Karl-Franzens-Universität Graz ist mit an Bord. Das Projekt läuft damit im Rahmen des Verbunds NAWI Graz.

Enzyme mit Licht antreiben

Das Projekt PhotoBioCat hat zwei inhaltliche Schwerpunkte: Zum einen wird die Nutzung von Cyanobakterien als Biokatalysatoren für lichtgetriebene biotechnologische Anwendungen in einer Reihe industriell relevanter Modellreaktionen untersucht und erprobt. Chemikalien für Polymere, Kosmetika und Medikamente werden zunehmend biotechnologisch mit der beschleunigenden Hilfe von Enzymen hergestellt. Die Enzyme müssen allerdings bislang mit Reduktionsäquivalenten angetrieben werden, sehr komplexe Moleküle, die sich nur teuer synthetisieren lassen. Cyanobakterien betreiben Photosynthese, wandeln also rein mit der Hilfe von Licht, Wasser und CO2 energiearme in energiereiche Stoffe um. Werden Enzyme genetisch in die Cyanobakterien eingeschleust, treiben sie dank ihrer katalytischen Funktion die chemische Reaktion an, das teure Reduktionsäquivalent wird damit überflüssig.

Projektleiter Robert Kourist erklärt: „Sind die Enzyme an die Photosynthese der Cyanobakterien gekoppelt, fallen teure Abfall- und Nebenprodukte weg und die biotechnologische Herstellung von Chemikalien wird leichter, schneller und kostengünstiger.“ Man spart sich etwa den Einsatz von großen Mengen an NADPH (Nicotinsäureamid-Adenin-Dinukleotid-Phosphat), das mit über 1.000 Euro pro Gramm ein teurer Reaktionspartner ist. Bis es soweit ist, ist allerdings noch einiges zu tun. „Wir wissen zwar, dass das im Labor funktioniert. Die große Herausforderung ist jetzt, den Prozess auf einen industriellen Maßstab umzulegen“, sagt Kourist. Die Kopplung an die Photosynthese soll zudem mit mehreren Enzymen durchprobiert und die Palette der künftig herstellbaren Chemikalien erweitert werden. Der zweite Fokus des Projekts liegt auf der Erhöhung der Effizienz, mit der Lichtenergie geerntet und an enzymatische Reaktionen weitergegeben werden kann (in vitro, also ohne lebende Trägerorganismen wie Cyanobakterien).

Ein Algenlabor an der TU Graz

An der TU Graz wachsen und gedeihen Mikroalgen seit wenigen Wochen kontrolliert in gläsernen Röhren und Kolben, und das freilich nicht ohne Grund: „Ein Teilbereich, den wir uns im Rahmen von PhotoBioCat genau anschauen, ist die Algenaufzucht für die biotechnologische Nutzung im großindustriellen Maßstab. Man kann Cyanobakterien in speziellen Algenlabors züchten und mit Licht bestrahlen. Ab einem gewissen Wachstumsgrad beschatten sich die Zellen aber gegenseitig. Das Licht hat geringere Wirkung, die Algen können nicht ihr volles Photosynthese-Potential ausschöpfen und damit geht wertvolle Reaktionstätigkeit verloren.“, erklärt Robert Kourist.

PhotoBioCat als Doktoranden-Netzwerk

Das Projekt PhotoBioCat ist zugleich ein europäisches Netzwerk von Doktoranden, die von 2018 bis 2021 mit führenden Experten an der lichtgetriebenen Reaktion für biotechnologische Anwendungen arbeiten werden. Die 12 Nachwuchsforscher kommen aus Österreich, Deutschland, Frankreich, Portugal, Dänemark und den Niederlanden. Am Institut für Molekulare Biotechnologie der TU Graz werden ebenso wie bei Wolfgang Kroutil vom Institut für Chemie der Uni Graz zwei Doktoranden an dem Projekt arbeiten. Ausbildungsinhalte des PhotoBioCat-Netzwerkes reichen von der Veränderung des Energiestoffwechsels von Mikroalgen mittels moderner Werkzeuge der synthetischen Biologie über den Antrieb biotechnologischer Reaktionen durch Photosynthese, die Entwicklung neuartiger Licht-getriebener enzymatischer Verfahren bis zur Entwicklung von Photobioreaktoren.

Fakten, Hintergründe, Dossiers
  • Cyanobakterien
  • Mikroalgen
  • Biotechnologie
  • Enzyme
  • Photosynthese
  • NADPH
  • enzymatische Katalyse
  • enzymatische Reaktionen
  • Photobioreaktoren
Mehr über TU Graz
  • News

    Elektronen in Quantenflüssigkeit tanken Laserenergie

    Erstmals ist es gelungen, die Aufnahme von Energie aus Laserlicht durch freie Elektronen in einer Flüssigkeit zu beobachten. Bisher war dies nur in der Gasphase möglich. Die Erkenntnisse unter der Leitung der TU Graz eröffnen der ultraschnellen Elektronenmikroskopie neue Türen. Bei der Unte ... mehr

    Erst heiß, dann kalt: Neue Erkenntnisse zur Entstehung von Eis

    Die weltweit erste molekulare Beobachtung zur Entstehung von Eis durch Forschende der TU Graz sowie der Unis Cambridge und Surrey zeigt, dass Wassermoleküle für den ersten Schritt der Eisbildung zusätzliche Energie aufbringen müssen. Wasser gefriert bei Temperaturen unter 0 Grad Celsius zu ... mehr

    Materialforschung auf dem Holzweg

    Holz als nachwachsende Ressource bietet ein hohes Potenzial im Kampf gegen den Klimawandel. Zum einen bindet es große Mengen an Kohlenstoff (1 Tonne pro Kubikmeter!). Zum anderen ist es eine umweltfreundliche Alternative zu den fossilen Rohstoffen, die einen Großteil der Treibhausgas-Emissi ... mehr

Mehr über Karl-Franzens-Universität Graz
  • News

    Molekulare Telegraphie

    Die Idee, einen Ball zu werfen und zu fangen, ist allen vertraut – aber kann man das auch mit einzelnen Molekülen machen? Also sie gezielt von einem Ort an einen anderen und wieder zurück transferieren? Und wie schnell wären die Moleküle? Diesen Fragen ist eine Forschungsgruppe der Universi ... mehr

    Wie man Biosprit aus Hefezellen gewinnt

    Biologisch hergestellter Treibstoff ist einer der Hoffnungsträger einer künftigen Energiewende. Verbrennungsmotoren mit klimaneutral hergestelltem Diesel oder Benzin könnten neben E-Mobilität den Ausstieg aus fossilen Energieträgern unterstützen. Derzeit muss dieser „Biosprit“ aber aus hoch ... mehr

    Flexibel durch Fehler

    Elektronische Bauteile wie Schalter oder Transistoren, die aus einem einzigen Molekül bestehen, könnten in Zukunft die Technik revolutionieren. Die Grundlagen dafür erforscht die Arbeitsgruppe Single-Molecule Chemistry an der Universität Graz unter der Leitung von Leonhard Grill. Das Team h ... mehr

  • q&more Artikel

    Lipidomics – der neue Stern am „OMICS“-Himmel

    Vor allem technologische und analytische Fortschritte bringen die Forschung voran. Dies gilt im biomedizinischen Bereich insbesondere für das Gebiet der Lipidforschung, das jahrzehntelang durch das Fehlen geeigneter Analysemethoden zur Untersuchung der enormen Komplexität von Lipiden im men ... mehr

  • Autoren

    Prof. Dr. Sepp D. Kohlwein

    Sepp D. Kohlwein, Jahrgang 1954, studierte Technische Chemie an der Technischen Universität Graz und promovierte dort 1982 am Institut für Biochemie zum Dr. techn. Bis 2001 war dort als assoziierter Professor tätig. Nach mehreren Forschungsaufenthalten am Albert Einstein College of Medicine ... mehr