Meine Merkliste
my.chemie.de  
Login  

Die Vermessung der Nanowelt

Forscher etablieren einen Maßstab zur genauen Bestimmung von Abständen innerhalb einzelner Moleküle

05.09.2018

Hugo Sanabria, Nandakumar Chedikulathu Vishnu/Universität Clemson

Forschende aus der ganzen Welt haben einen Maßstab für die FRET-Technologie definiert, indem sie Entfernungen innerhalb von DNA-Molekülen im Subnanometerbereich gemessen haben.

Eine weltweite Studie mit Beteiligung von 20 Laboren hat eine Methode etabliert und standardisiert, um die Abstände innerhalb einzelner Biomoleküle bis auf ein Millionstel der Breite eines menschlichen Haares exakt zu messen. Die Methode stellt eine wesentliche Verbesserung einer Technologie namens „Einzelmolekül-FRET“ (Förster Resonanz Energie Transfer) dar, bei der die Bewegung und Wechselwirkung von fluoreszenzmarkierten Molekülen auch in lebenden Zellen in Echtzeit überwacht werden kann. Bisher wurde die Technologie hauptsächlich zur Untersuchung von Veränderungen relativer Abstände verwendet, also um festzustellen, ob sich Moleküle angenähert oder weiter voneinander entfernt haben. Prof. Dr. Thorsten Hugel vom Institut für Physikalische Chemie und dem BIOSS Centre for Biological Signalling Studies der Universität Freiburg ist einer der leitenden Wissenschaftler der Studie, die kürzlich in der Fachzeitschrift „Nature Methods“ veröffentlicht worden ist.

FRET funktioniert nach einem ähnlichen Prinzip wie Annäherungssensoren im Auto: Je mehr sich das Objekt nähert, desto lauter oder häufiger werden die Pieptöne. Statt auf Akustik zu setzen, basiert FRET auf abstandsabhängigen Änderungen des Fluoreszenz-Lichts zweier Farbstoffe, die mithilfe empfindlicher Mikroskope angezeigt werden. Die Technologie hat die Analyse der Bewegung und der Interaktionen von Biomolekülen in lebenden Zellen revolutioniert.

Hugel und seine Kollegen vermuteten, dass nach der Etablierung eines FRET-Standards unbekannte Entfernungen mit großer Sicherheit ermittelt werden können. Durch die Zusammenarbeit der 20 an der Studie beteiligten Labore wurde die Methode so verfeinert, dass Wissenschaftler mit verschiedenen Mikroskopen und unterschiedlicher Analysesoftware die gleichen Abstandstände auch im Subnanometerbereich erhielten.

„Die absolute Abstandsinformation, die mit dieser Methode gewonnen werden kann, ermöglicht es uns nun, Konformationen in beweglichen Biomolekülen präzise zuzuordnen oder sogar deren Strukturen zu bestimmen“, sagt Hugel, der die Studie gemeinsam mit Dr. Tim Craggs (University of Sheffield/Groß-Britannien), Prof. Dr. Claus Seidel (Universität Düsseldorf) und Prof. Dr. Jens Michaelis (Universität Ulm) leitete. Solche dynamischen Strukturinformationen führen zu einem besseren Verständnis der molekularen Maschinen und Prozesse, die für das Leben grundlegend sind. 

Fakten, Hintergründe, Dossiers
Mehr über Uni Freiburg
  • News

    Hohlräume in 3D

    Quarzglas ist das bevorzugte Material für Anwendungen, die eine langfristige Nutzung erfordern, da es hohe chemische und mechanische Stabilität sowie hervorragende optische Eigenschaften aufweist. Der Ingenieur Prof. Dr. Bastian E. Rapp vom Institut für Mikrosystemtechnik (IMTEK) der Univer ... mehr

    Endlich in der Flasche

    Seit der Entdeckung des ersten homoleptischen Metallcarbonylkomplexes Ni(CO)4 vor über 130 Jahren, versuchen Wissenschaftler, weitere solche für Grundlagenforschung wie Anwendung wichtige Verbindungen eines Kohlenmonoxidmoleküls mit einem Metall zu erhalten. Die letzte neue Verbindung diese ... mehr

    Kohlenstoffdioxid sicher in tiefen Erdschichten speichern

    Ein Team um Dr. Johannes Miocic vom Institut für Geo- und Umweltnaturwissenschaften der Universität Freiburg und Dr. Stuart Gilfillan von der Universität Edinburgh in Schottland hat gezeigt, dass Kohlenstoffdioxid (CO2) auch dann sicher in tiefen Erdschichten gespeichert werden kann, wenn g ... mehr

  • Firmen

    Albert-Ludwigs-Universität Freiburg

    mehr

  • Universitäten

    Albert-Ludwigs-Universität Freiburg

    Die Albert-Ludwigs-Universität liegt nicht nur im Herzen der Stadt Freiburg - die Studierenden, Professor/innen und Mitarbeiter/innen sind auch in den Alltag der Bürgerinnen und Bürger der Schwarzwaldhauptstadt integriert. Darin liegt auch einer der Reize, die das Studium in Freiburg so bel ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.