13.11.2018 - Ruhr-Universität Bochum (RUB)

Welchen Weg Protonen in Enzymen nehmen

Erkenntnisse ebnen den Weg zum chemischen Nachbau von Wasserstoff erzeugenden Enzymen

Wie genau bestimmte Algenenzyme Wasserstoff produzieren, war bisher Gegenstand von Spekulationen. Dr. Martin Winkler, Dr. Jifu Duan, Prof. Dr. Eckhard Hofmann und Prof. Dr. Thomas Happe von der Ruhr-Universität Bochum (RUB) ist es gemeinsam mit Kollegen der Freien Universität Berlin erstmals gelungen, den Weg der Protonen bis ins aktive Zentrum dieser [FeFe]-Hydrogenasen exakt nachzuvollziehen. Das könnte es erlauben, solche effizienten, aber anfälligen Biokatalysatoren chemisch stabiler nachzubauen.

Einzigartige Effizienz beruht auf Transportweg

Die Hydrogenasen stellen in ihrem katalytischen Zentrum aus zwei Protonen und zwei Elektronen Wasserstoff her. Die dazu notwendigen Protonen beziehen sie aus dem sie umgebenden Wasser und transportieren sie über verschiedene Zwischenstationen in ihr Inneres. Wie genau der Weg der Protonen durch die Hydrogenase aussieht, war bisher nicht bekannt. „Dieser Transportweg ist ein wesentliches Puzzleteil zum Verständnis des Zusammenwirkens von Kofaktor und Protein, das die einzigartige Effizienz von Biokatalysatoren gegenüber Wasserstoff produzierenden chemischen Komplexen begründet“, erläutert Dr. Martin Winkler, einer der Autoren der Studie aus der Arbeitsgruppe Photobiotechnologie der RUB.

Strukturen von Enzymvarianten aufgeklärt

Um herauszufinden, welche der infrage kommenden Bausteine der Hydrogenase am Protontransport beteiligt sind, tauschten die Forscher sie jeweils einzeln aus. Sie setzten an ihre Stelle testweise eine Aminosäure, die ähnlich funktionierte, und eine funktionslose Aminosäure. So entstanden insgesamt 22 Varianten zweier verschiedener Hydrogenasen. Diese Varianten verglichen die Forscher dann unter verschiedenen Aspekten, so auch ihre spektroskopischen Eigenschaften und ihre Enzymaktivität. „Besonders aufschlussreich waren aber die molekularen Strukturen von zwölf Proteinvarianten, die mit der Röntgenstrukturanalyse aufgeklärt wurden“, so Winkler.

Funktionslose Aminosäuren legen Hydrogenasen still

Je nachdem, an welcher Stelle die Wissenschaftler die Hydrogenase wie verändert hatten, funktionierte die Wasserstoffproduktion nur noch weniger effizient oder gar nicht mehr. „Wir haben so herausgefunden, warum manche Varianten empfindlich in ihrer Enzymaktivität gestört sind und andere wider Erwarten kaum beeinträchtigt sind“, sagt Martin Winkler.

Je näher am katalytischen Zentrum die Aminosäuren ausgetauscht wurden, desto weniger gut konnte die Hydrogenase diese Veränderung kompensieren. Funktionslose Bausteine an empfindlichen Stellen führten zur Stilllegung der Wasserstoffproduktion. „Der so erzeugte Zustand gleicht dem einer Übersättigung durch Protonenstress, bei der sowohl Protonen als auch Wasserstoff in die Hydrogenase eingebracht werden“, erklärt Martin Winkler. „Diesen schon aus Experimenten bekannten, sehr flüchtigen Zustand konnten wir in unserer Arbeit zum ersten Mal stabilisieren und analysieren.“

Wertvolle Grundlageninformationen

Die Studie erlaubt es für die Enzymgruppe der [FeFe]-Hydrogenasen erstmals, die Funktion einzelner Aminosäuren dem Protonentransferpfad zuzuordnen. „Darüber hinaus liefert sie wertvolle Informationen über den molekularen Mechanismus des Protonentransfers durch redox-aktive Proteine und dessen strukturelle Voraussetzungen“, so Thomas Happe.

Fakten, Hintergründe, Dossiers
  • Enzymaktivität
Mehr über Ruhr-Universität Bochum
  • News

    Wie eingesperrte Protonen wandern

    Protonen können in wässrigen Lösungen üblicherweise sehr schnell wandern – schneller als andere Ionen. Das gilt allerdings nur, wenn sie mehr als zwei Nanometer Platz haben, wie eine Studie der Ruhr-Universität Bochum (RUB) und der University of California in Berkeley zeigt. Auf engem Raum ... mehr

    Schritt für Schritt zum Endprodukt per Enzymkatalyse

    Die Herstellung des Zuckers Trehalose, der als functional food, Additiv in Pharmaprodukten oder in Kosmetika eingesetzt wird, ist für Enzyme Teamarbeit: Eines sorgt für den Bau eines energiereichen Zwischenprodukts (UDP-Glukose), aus dem das zweite dann Trehalose macht. Obwohl Nummer eins b ... mehr

    Wie Cola nach einem Jahr noch prickelt

    Sorgt man gezielt dafür, dass sich in Plasmen Polymere bilden und auf den umgebenden Oberflächen ablagern, kann man diese gezielt beschichten. Dank dieser sogenannten Plasma Enhanced Chemical Vapour Deposition, kurz PECVD, kann man zum Beispiel dünnste, gasdichte Beschichtungen auf die Inne ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr