Meine Merkliste
my.chemie.de  
Login  

Erneuerbare Energien chemisch speichern

Erforschung von katalytischen Systemen unter schwankenden Betriebsbedingungen bei Nutzung von Wind- und Sonnenenergie

01.03.2019

Pascal Armbruster, KIT

Energie aus erneuerbaren Quellen speichern – das ist eine der Herausforderungen der Energiewende.

Grafik und ©: Arbeitsgruppe Grunwaldt, KIT

Schematische Darstellung und Überblick über die wissenschaftliche Arbeit im SPP2080: Mit erneuerbaren Energien werden aus Kohlendioxid und Wasser durch Elektrolyse und katalytische Umsetzung Chemikalien und Kraftstoffe hergestellt.

2050 sollen 80 Prozent des Stroms in Deutschland aus erneuerbaren Energiequellen stammen. Um dies zu erreichen, ist es notwendig, elektrische Energie in chemischen Energieträgern zu speichern. Im Schwerpunktprogramm „Katalysatoren und Reaktoren unter dynamischen Betriebsbedingungen für die Energiespeicherung und -wandlung“ (SPP 2080, DynaKat) der Deutschen Forschungsgemeinschaft (DFG) untersuchen zwölf große Forschungskonsortien, wie sich katalytische Reaktionssysteme unter solchen Bedingungen verhalten. Das Karlsruher Institut für Technologie (KIT) koordiniert das Schwerpunktprogramm.

Sonne und Wind sind neben Biomasse die wichtigsten erneuerbaren Energieträger, aber sie stehen nicht gleichmäßig zur Verfügung. An wind- und sonnenreichen Tagen fällt mehr Strom an, als in die Netze eingespeist werden kann. Diese Überproduktionen aus Windkraft- und Photovoltaikanlagen lassen sich in Chemikalien speichern. So kann elektrische Energie zu einem späteren Zeitpunkt wieder zur Verfügung stehen, die Chemikalien können aber auch als nachhaltige Bausteine genutzt werden, um Treibstoffe oder Plattformmoleküle für die chemische Industrie herzustellen.

Für die Umwandlung von Kohlendioxid oder Wasserstoff in Speichermoleküle wie Methan, Kohlenwasserstoffe oder Alkohole sind Katalysatoren, elektrochemische Zellen und Reaktoren notwendig. Wie sich der Einfluss wechselhafter dynamischer Gegebenheiten von außen – durch das Schwanken von Windstärke und Sonneneinstrahlung – auf die katalytischen Reaktionssysteme auswirkt, wurde bislang kaum betrachtet. „Man weiß jedoch, dass sich die Struktur fester Katalysatoren und damit ihre katalytische Wirkung mit den Reaktionsbedingungen stark ändern kann. Dies ist wissenschaftlich hochspannend“, sagt Professor Jan-Dierk Grunwaldt von den Instituten für Technische Chemie und Polymerchemie (ITCP) sowie für Katalyseforschung und -technologie (IKFT) des KIT. Der Inhaber des Lehrstuhls für Chemische Technik und Katalyse koordiniert das DFG-Schwerpunktprogramm DynaKat, an dem neben dem KIT zahlreiche weitere Forschungseinrichtungen in ganz Deutschland beteiligt sind, darunter das Forschungszentrum Jülich, die TU München und mehrere Max-Planck-Institute wie das Berliner Fritz-Haber-Institut. Das Kick-off-Meeting fand im Februar mit über 70 Teilnehmenden in Karlsruhe statt. Die deutschlandweit zwölf interdisziplinären, überregionalen Forschungsprojekte untergliedern sich in 34 Teilprojekte, sieben von ihnen sind am KIT verortet, das sich mit dem ITCP, dem IKFT sowie dem Institut für Mikroverfahrenstechnik (IMVT) beteiligt.

Die DFG fördert das auf insgesamt sechs Jahre angelegte Schwerpunktprogramm DynaKat zunächst für drei Jahre mit 8,5 Millionen Euro. Der projektstärkste Partner ist das KIT.

„Wir wollen Veränderungen des Materials der Katalysatoren unter dynamischen Bedingungen grundlegend verstehen und verbessern“, sagt Dr. Erisa Saraçi, wissenschaftliche Mitarbeiterin am IKFT und Mitorganisatorin des Kick-off-Meetings am KIT. Dafür werden alle beteiligten Prozesse untersucht, von den Vorgängen auf der atomaren Ebene des Katalysators bis zur räumlichen Verteilung der Stoffkonzentrationen und Temperaturen auf Reaktorebene. Für ein grundlegendes Verständnis der Prozesse und um neue Ansätze im Material- und Reaktordesign zu entwickeln, kommen klassische etablierte Experimente ebenso zum Einsatz wie neueste spektroskopische Methoden und Möglichkeiten der Modellierung.

Das Einbeziehen des wissenschaftlichen Nachwuchses spielt im DFG-Schwerpunktprogramm DynaKat eine wichtige Rolle, so steht ein Blockkurs am KIT zum Thema „Technologien und Ressourcen für Erneuerbare Energien: Von Wind und Solar zu Chemischen Energieträgern“ interessierten Studierenden und Promovierenden offen. „In der Forschung kommt man ohne Netzwerke und Teamarbeit nicht voran, da die einzelnen Teildisziplinen sehr komplex sind“, sagt Sebastian Weber, Doktorand am IKFT/ITCP. Gerade für den wissenschaftlichen Nachwuchs seien der Austausch und das Zusammenbringen unterschiedlicher Expertisen wertvoll, betonen Saraçi und Weber. „Es geht darum, Kompetenzen zu bündeln und das Themengebiet deutschlandweit voranzutreiben, um darin international führend zu werden“, so Programmkoordinator Grunwaldt.

Fakten, Hintergründe, Dossiers
Mehr über KIT
  • News

    „Crowd Oil“: Kraftstoffe aus der Klimaanlage

    Klima- und Lüftungsanlagen, die aus Kohlendioxid (CO2) und Wasser aus der Umgebungsluft synthetische Kraftstoffe herstellen – ein Verfahren, das dies möglich machen soll, haben nun Forscher des Karlsruher Instituts für Technologie (KIT) und der University of Toronto vorgeschlagen. Dabei sol ... mehr

    Energieeffizientes Supraleiterkabel für Zukunftstechnologien

    Ob für die Anbindung von Windparks, für die Gleichstromversorgung auf Schiffen oder sogar für leichte und kompakte Hochstromleitungen in künftigen vollelektrischen Flugzeugen: Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben ein vielseitiges Supr ... mehr

    Versteckte Ordnung in der Unordnung

    Den Raum in Zellen mit optimalen geometrischen Eigenschaften einzuteilen, ist eine zentrale Herausforderung in vielen Bereichen der Wissenschaft und Technik. Nun haben Forscher am Karlsruher Institut für Technologie (KIT) mit Kollegen aus mehreren Ländern festgestellt, dass bei amorphen, da ... mehr

  • Videos

    Bioliq: Energiegewinnung aus Reststoffen – komplette Prozesskette läuft

    Die bioliq®-Pilotanlage am Karlsruher Institut für Technologie (KIT) läuft erfolgreich über die gesamte Prozesskette. Alle Stufen des Verfahrens sind nun miteinander verbunden: Schnellpyrolyse, Hochdruck-Flugstromvergasung, Heißgasreinigung und Synthese. Durch bioliq® wird Restbiomasse in u ... mehr

    Sicherheit von Lithium-Ionen-Batterien erhöhen

    Lithium-Batterien sollten bei Transport, Montage und im Betrieb wirklich sicher sein. KIT-Wissenschaftler erklären, welche Faktoren dazu beitragen, die Sicherheit von Lithium-Ionen-Batterien zu erhöhen. mehr

    Kleben wie ein Gecko: selbstreinigend und haftsicher

    Geckos haben Klebestreifen eines voraus: Selbst nach wiederholtem Kontakt mit Schmutz und Staub kleben ihre Füße noch auf glatten Flächen einwandfrei. Forscher des KIT und der Carnegie Mellon Universität in Pittsburgh haben nun den ersten Klebstreifen entwickelt, der nicht nur genauso hafts ... mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Stefan Bräse

    Stefan Bräse, geb. 1967, studierte Chemie in Göttingen und promovierte dort 1995 an der Universität. Nach Postdoktoraten in Uppsala/S und La Jolla/USA begann er an der RWTH ­Aachen mit seinen eigenständigen Arbeiten (Habilitation in organischer Chemie 2001) und wechselte 2001 als Professor ... mehr

    Dr. Sidonie Vollrath

    Sidonie Vollrath, geb. 1984, studierte Chemie in Karlsruhe und promovierte 2012 am KIT in der Gruppe von Prof. S. Bräse. ­Während des Studiums und der Promotion ­absolvierte sie Forschungsaufenthalte an der University of Wisconsin in Madison bei Prof. H. Blackwell sowie an der New York Univ ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.