Meine Merkliste
my.chemie.de  
Login  

Schneller rechnen mit Quasi-Teilchen

13.05.2019

Ewelina Hankiewicz

Schema eines zweidimensionalen Josephson-Kontakts: Zwischen zwei Supraleitern befindet sich ein zwei-dimensionales Elektronengas. Legt man dort ein Magnetfeld an, zeigen sich Majorana-Fermionen.

Majorana-Teilchen sind äußerst spezielle Mitglieder in der Familie der Elementarteilchen. 1937 vom italienischen Physiker Ettore Majorana vorhergesagt, gehören sie wie Elektronen, Neutronen und Protonen zur Gruppe der sogenannten Fermionen. Sie sind elektrisch neutral – und zudem identisch mit ihren Antiteilchen. Die exotischen Teilchen können beispielsweise als Quasi-Teilchen in topologischen Supraleitern auftreten und bilden damit ideale Bausteine für topologische Quantencomputer.

Sprung in die Zweidimensionalität

Auf dem Weg zu solch einem topologischen Quantencomputer, der mit Majorana-Teilchen arbeitet, haben Physiker der Julius-Maximilians-Universität Würzburg (JMU) gemeinsam mit Kollegen der Harvard University (USA) jetzt einen Erfolg erzielt: Während bisherige Experimente auf diesem Gebiet bisher im eindimensionalen Raum stattfanden, ist ihnen der Sprung in die Zweidimensionalität gelungen.

Daran beteiligt waren Arbeitsgruppen der Würzburger Professoren Ewelina Hankiewicz, Lehrstuhl für Theoretische Physik IV, und Laurens Molenkamp, Inhaber des Lehrstuhls für Experimentelle Physik III, sowie die Teams von Amir Yacoby und Bertrand Halperin der Harvard University. In der aktuellen Ausgabe der Fachzeitschrift Nature stellen die Physiker die Ergebnisse ihrer Arbeiten vor.

Zwei Supraleiter verringern den Aufwand

„Die Realisierung von Majorana-Fermionen ist eines der aktuellsten Themen der Festkörperphysik“, erklärt Ewelina Hankiewicz. Bisherige Realisierungen beschränken sich ihren Worten nach allerdings meist auf ein-dimensionale Systeme wie beispielsweise Nanodrähte. Das erschwert die Manipulation dieser Teilchen und erhöht den Aufwand enorm, wenn sie als Informationsträger in Quantencomputern zum Einsatz kommen sollen, so die Physikerin.

Um einige dieser Schwierigkeiten zu umgehen, haben die Wissenschaftler jetzt Majorana-Fermionen in einem zwei-dimensionalen System mit starker Spin-Bahn-Wechselwirkung untersucht. „Bei diesem System handelt es sich um einen sogenannten phasen-kontrollierten Josephson-Kontakt, das heißt, zwei Supraleiter, die durch eine normal leitende Region voneinander getrennt sind“, erkärt Laurens Molenkamp. Die supraleitende Phasendifferenz zwischen den beiden Supraleitern biete dabei einen zusätzlichen Parameter, durch den die aufwändige Feinabstimmung anderer Systemparameter zumindest teilweise vermieden werden könne.

Wichtiger Schritt zu einer verbesserten Kontrolle

In dem von ihnen verwendeten Material, einem Quecksilber-Tellurium-Quantentrog mit dünnen supraleitenden Aluminium-Schichten, sahen die Physiker erstmals einen topologischen Phasenübergang, was für die Existenz von Majorana-Fermionen in phasen-kontrollierten Josephson-Kontakten spricht. Dementsprechend stelle das von ihnen experimentell realisierte System eine vielseitige Plattform zur Erzeugung, Manipulation und Kontrolle von Majorana-Fermionen dar, die einige Vorteile gegenüber bisherigen ein-dimensionalen Plattformen aufweist. Dies bedeute „einen wichtigen Schritt auf dem Weg zu einer verbesserten Kontrolle von Majorana-Fermionen“, so Hankiewicz.

Der Nachweis eines topologischen Supraleiters in einem zwei-dimensionalen Josephson-Kontakt eröffnet nun neue Möglichkeiten für die Erforschung von Majorana-Fermionen in der Festkörperphysik. Insbesondere werden einige Einschränkungen bisheriger Realisierungen von Majorana-Fermionen vermieden.

Potenzial für eine Revolution der Computertechnologie

Gleichzeitig stellt eine verbesserte Kontrolle von Majorana-Fermionen einen wichtigen Schritt in Richtung topologischer Quantencomputer dar. Solche Computer sind theoretisch sehr viel leistungsfähiger als klassische Rechner und haben so das Potenzial, die Computertechnologie zu revolutionieren.

In einem nächsten Schritt wollen die Physiker nun die Josephson-Kontakte verbessern und mit dünneren, normal leitenden Regionen herzustellen versuchen, da sie davon stärker lokalisierte Majorana-Fermionen erwarten. Daneben suchen sie nach weiteren Möglichkeiten zur Manipulation der Majorana-Fermionen, beispielsweise durch die Verwendung anderer Halbleiter-Materialien.

Fakten, Hintergründe, Dossiers
  • Majorana-Fermionen
  • Quasiteilchen
  • Quantencomputer
Mehr über Uni Würzburg
  • News

    Durchbruch in der Stickstoffchemie

    Zwei Moleküle Stickstoff macht über 78 Prozent der Atemluft aus. Er ist das Element, das auf der Erde am häufigsten in seiner reinen Form vorkommt. Der Grund für diese Fülle an elementarem Stickstoff ist die unglaubliche Stabilität des Moleküls N2, das aus zwei Stickstoffatomen besteht. In ... mehr

    Molekulare Einblicke in Spinnenseide

    Spinnenseide ist eine der stärksten Fasern der Natur und verfügt über etliche verblüffende Eigenschaften. Wissenschaftler der Universität Würzburg haben jetzt neue Details ihres Aufbaus entschlüsselt. Sie sind leicht, beinahe unsichtbar, extrem dehnbar und reißfest und natürlich biologisch ... mehr

    Neuartiger topologischer Isolator

    Topologische Isolatoren sind Materialien mit sehr speziellen Eigenschaften. Sie leiten elektrischen Strom oder Lichtteilchen nur an ihrer Oberfläche oder an ihren Kanten weiter, nicht aber in ihrem Inneren. Dieses ungewöhnliche Verhalten könnte einmal zu technischen Innovationen führen, und ... mehr

  • Universitäten

    Julius-Maximilians-Universität Würzburg

    Nach einer kurzlebigen Erstgründung von 1402 wurde die Julius-Maximilians-Universität 1582 auf Initiative des Fürstbischofs Julius Echter von Mespelbrunn gestiftet und eingerichtet. Heute, über 400 Jahre später, kann sie auf eine erfolgreiche Geschichte zurückblicken. Berühmte Wissenschaf ... mehr

  • q&more Artikel

    Multinationale Medikamente

    Während in den 90er-Jahren des letzten Jahrhunderts 80 % aller Wirkstoffe und Hilfsstoffe in Europa bzw. in den USA produziert wurden, werden heute nahezu alle Ausgangsstoffe zur Herstellung von Arzneimittel in China und Indien hergestellt. Dies gilt nicht nur für die einzelnen Stoffe, sond ... mehr

    Hightech im Bienenvolk

    Vitale Bienenvölker sind von höchster Relevanz für die Aufrechterhaltung der natürlichen Diversität von Blütenpflanzen und die globale pflanzliche Nahrungsmittelproduktion, die zu 35 % von Insektenbestäubern abhängt, unter denen die Honigbiene (Apis mellifera) die überragende Rolle spielt. ... mehr

  • Autoren

    Prof. Dr. Jürgen Tautz

    Jg. 1949, studierte Biologie, Geographie und Physik an der Universität Konstanz und promovierte dort über ein sinnesökologisches Thema. Nach Arbeiten zur Bioakustik von Insekten, Fischen und Fröschen gründete er 1994 die BEEgroup an der Universität Würzburg, die sich mit Grundlagenforschung ... mehr

    Prof. Dr. Ulrike Holzgrabe

    Ulrike Holzgrabe (Jg. 1956) studierte Chemie und Pharmazie in Marburg und Kiel. Nach Approbation und Promotion folgte die Habilitation für Pharmazeutische Chemie 1989 ­in Kiel. Sie hatte eine Professur in Bonn (1990-1999), lehnte C4-Rufe nach Tübingen und Münster ab und folgte dem Ruf nach ... mehr

Mehr über Harvard University
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.