03.09.2019 - Technische Universiteit Eindhoven

Bunte Mikroreaktoren nutzen Sonnenlicht

Energie effiziente solare Photochemie mit Lumineszenz-Solarkonzentratoren

Die Sonne ist die nachhaltigste Energiequelle auf unserem Planeten und lässt sich nutzen, um photochemische Reaktionen in Gang zu bringen. In der Zeitschrift Angewandte Chemie stellen Wissenschaftler einen breit anwendbaren, kostengünstigen Photo-Mikroreaktor vor. Er basiert auf „lumineszierenden Solarkonzentratoren“, die Photonen einfangen, umwandeln und der Reaktion zur Verfügung stellen. So gelang unter anderem die Synthese zweier Pharmaka.

Forschungen zur Nutzung des Sonnenlichts konzentrierten sich bisher vor allem auf Solarstrom, Solarthermie und Solarbrennstoffe, während die Sonnenlicht-getriebene Synthese von Chemikalien noch in den Kinderschuhen steckt. Lichtenergie kann chemische Reaktionen „beflügeln“, indem sie z.B. einen Katalysator in einen angeregten Zustand versetzt und eine Reaktion auf diese Weise beschleunigt oder erst ermöglicht. Nachteile der Sonne als Lichtquelle sind jedoch, dass der Großteil der spektralen Berstrahlungsstärke (Strahlungsfluss pro Oberflächeneinheit) nur in den relativ schmalen Bereich des sichtbaren Lichts fällt und zudem Schwankungen in der Bestrahlungsstärke, z.B. durch vorbeiziehende Wolken, auftreten können.

Die Wissenschaftler von der Universität Eindhoven, Niederlande, und dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, Deutschland, zeigen jetzt erstmals, dass verschiedenste Reaktionstypen effektiv durch Bestrahlung mit Sonnenlicht angetrieben werden können. Erfolgsgeheimnis ist ihr speziell entwickelter kostengünstiger „Photomikroreaktor“ auf der Basis lumineszierender Solarkonzentratoren (Luminescent Solar Concentrators, LSCs).

Die LSCs sind lichtleitende Platten aus Polymethylmethacrylat (PMMA), denen spezielle Leuchtstoffe beigegeben werden, die Photonen aus dem Sonnenlichtspektrum einfangen und anschließend als Fluoreszenz wieder abstrahlen – bei einer für den Leuchtstoff charakteristischen, etwas längeren Wellenlänge. Auf diese Weise wird das Sonnenlicht in einen schmalen Wellenlängenbereich konzentriert, sodass Tageszeit- und Wetter-abhängige Schwankungen der spektralen Verteilung keine Rolle mehr spielen.

In die LSCs sind feine Kanäle aus einem lösungsmittelbeständigen Kunststoff eingebettet, durch die die Reaktionsmischung fließt. Ein Lichtsensor misst die Lichtintensität und ein integrierter Schaltkreis passt die Fließgeschwindigkeit autonom an: Je geringer die Lichtintensität, desto langsamer soll die Mischung den Kanal passieren, damit sie die notwendige Strahlungsdosis für einen ausreichenden Umsatz abbekommt. So lassen sich Fluktuationen des Sonnenlichts ausgleichen und das Produkt bleibt einheitlich.

Die Wahl der in die LSCs eingebetteten Leuchtstoffe richtet sich nach der benötigten Wellenlänge der jeweiligen für die gewünschte Reaktion benötigten Katalysatoren. Die Forscher um Timothy Noël stellten rote, grüne und blaue LSC-Reaktoren her für Reaktionen mit den Photokatalysatoren Methylenblau (roter Reaktor), Eosin Y und Bengalrosa (grüner Reaktor) sowie Ruthenium-basierten Komplexen (blauer Reaktor). „So gelang uns unter anderem die Synthese des Wurmmittels Ascaridol und eines Vorläufers des Malariamittels Artemisinin“, so Noël. „Ein solcher solarer Produktionsansatz ist von hohem Interesse für Produkte mit hoher Wertschöpfung, wie Feinchemikalien, Pharmaka und Duftstoffen. Er käme insbesondere auch Ressourcen armen Ländern zugute.“

Fakten, Hintergründe, Dossiers
  • Synthese
  • photochemische Reaktionen
  • chemische Reaktionen
Mehr über TU Eindhoven
Mehr über MPI für Kolloid- und Grenzflächenforschung
  • News

    Erster programmierbarer Photokatalysator entwickelt

    Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung haben einen nachhaltigen und „intelligenten Photokatalysator“ entwickelt. Die Besonderheit: Als sogenanntes smart material kann er zwischen Lichtfarben (Blau, Rot und Grün) unterscheiden und ermöglicht als Antwort darauf ... mehr

    Nanomaterialien mit Laserdruck herstellen

    Ein interdisziplinäres Team vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung stellt im Fachmagazin Nature Communications erstmals eine Lasertechnologie vor, die es ermöglicht, Nanopartikel wie Kupfer-, Kobalt- und Nickeloxid herzustellen. Mit der üblichen Druckgeschwindigkeit ... mehr

    In Millisekunden von verschmutztem zu klarem Wasser

    Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung haben eine Membran entwickelt, die aus unzähligen nanometerkleinen Röhren besteht. Diese setzten sie als Nanoreaktor ein, um mithilfe von Sonnenlicht in Millisekunden mit Methylenblau markiertes Wasser in klares umzuwand ... mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Institut für Kolloid- und Grenzflächenforschung

    Das Max-Planck-Institut für Kolloid- und Grenzflächenforschung wurde 1992 gegründet. Es wird kollegial geleitet und gliedert sich in die Abteilungen Biomaterialien, Biomolekulare Systeme, Grenzflächen, Kolloidchemie und Theorie & Bio-Systeme. Aktuelle Forschungs-schwerpunkte sind polymere F ... mehr

  • q&more Artikel

    Mit Licht im Kampf gegen Malaria

    Malaria stellt ein globales Gesundheitsproblem dar, das nur schwer in den Griff zu bekommen ist. Von den mehr als 200 Millionen Erkrankten sterben jedes Jahr über 500.000 und insbesondere für Kinder ist die Gefahr eines tödlichen Verlaufs hoch [1]. Die Krankheit wird durch einzellige Erreg ... mehr

  • Autoren

    Dr. Daniel Kopetzki

    Daniel Kopetzki, geb. 1983, studierte Chemie an der Universität Regensburg und promovierte am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam in der Abteilung Kolloidchemie. Seit Sept. 2011 arbeitet er als Postdoktorand bei Prof. Dr. Seeberger am Max-Planck-Institut fü ... mehr

    Prof. Dr. Peter Seeberger

    Peter H. Seeberger, geb. 1966, studierte Chemie an der Universität Erlangen-Nürnberg und promovierte in Biochemie an der University of Colorado. Nach einem Postdocaufenthalt am Sloan-Kettering Institute for Cancer Research in New York City war er von 1998 – 2002 Assistant Professor und Firm ... mehr

Mehr über Angewandte Chemie
  • News

    Für eine kostengünstigere Wasserstoff-Produktion

    Die mit Strom aus erneuerbaren Energiequellen angetriebene elektrolytische Wasserstoff-Erzeugung wird als ein umweltfreundlicher Weg zur Linderung der globalen Klima- und Energieproblematik angesehen. In der Zeitschrift Angewandte Chemie stellt ein Forschungsteam jetzt ein neuartiges kosten ... mehr

    Falsche optische Aktivität korrigieren

    Viele Naturstoffe sind kompliziert aufgebaute organische Moleküle. Häufig lassen sie sich aber mit spektroskopischen Techniken gut nachweisen. Ein Team von Forschern hat nun herausgefunden, dass bei chiralen Molekülen (Molekülen ohne Spiegelsymmerie) bei der Analyse mit Raman-Spektroskopie ... mehr

    Herumgereichte Elektronen

    Durch Licht ausgelöste Ladungsübertragungen (Charge-Transfer) sind eine interessante elektronische Eigenschaft von Berliner Blau und einigen analog aufgebauten Verbindungen. Ein Forschungsteam konnte jetzt die ultraschnellen Prozesse bei der lichtinduzierten Ladungsübertragung zwischen Eise ... mehr