30.09.2019 - Ruhr-Universität Bochum (RUB)

Kohlendioxid mithilfe von Nanopartikeln in Rohstoffe umwandeln

Enzyme nutzen Kaskadenreaktionen, um komplexe Moleküle aus vergleichsweise simplen Rohstoffen herzustellen. Das Prinzip haben Forscher sich abgeschaut.

Ein internationales Forschungsteam hat Kohlendioxid mithilfe von Nanopartikeln in Rohstoffe umgewandelt. Das Prinzip dafür schauten sich die Wissenschaftler der Ruhr-Universität Bochum und University of New South Wales in Australien von Enzymen ab, die komplexe Moleküle in vielschrittigen Reaktionen herstellen. Diesen Mechanismus übertrug das Team auf metallische Nanopartikel, auch Nanozyme genannt. So erzeugten die Chemiker aus Kohlendioxid Ethanol und Propanol, die häufige Ausgangsstoffe für die chemische Industrie sind.

Das Team um Prof. Dr. Wolfgang Schuhmann vom Bochumer Zentrum für Elektrochemie sowie Prof. Dr. Corina Andronescu von der Universität Duisburg-Essen berichtet gemeinsam mit dem australischen Team um Prof. Dr. Justin Gooding und Prof. Dr. Richard Tilley im Journal of the American Chemical Society vom 25. August 2019.

„Die Kaskadenreaktionen der Enzyme auf katalytisch aktive Nanopartikel zu übertragen, könnte ein entscheidender Schritt im Design von Katalysatoren sein“, resümiert Wolfgang Schuhmann.

Partikel mit zwei aktiven Zentren

Enzyme besitzen für Kaskadenreaktionen verschiedene aktive Zentren, die auf bestimmte Reaktionsschritte spezialisiert sind. So kann ein einziges Enzym aus einem vergleichsweise einfach aufgebauten Ausgangsstoff ein komplexes Produkt erzeugen. Um dieses Konzept nachzuahmen, synthetisierten die Forscher ein Partikel mit einem Silberkern, das von einer porösen Schicht aus Kupfer umgeben ist. Der Silberkern dient als erstes aktives Zentrum, die Kupferschicht als zweites. Zwischenprodukte, die im Silberkern gebildet werden, reagieren anschließend in der Kupferschicht weiter zu komplexeren Molekülen, die letztendlich das Partikel verlassen.

In der vorliegenden Arbeit zeigte das deutsch-australische Team, dass in den Nanozymen die elektrochemische Reduktion von Kohlendioxid stattfinden kann. Mehrere Reaktionsschritte am Silberkern und Kupfermantel verwandeln den Ausgangsstoff zu Ethanol oder Propanol.

„Es gibt auch andere Nanopartikel, die diese Produkte ohne Kaskadenprinzip aus CO2 herstellen können“, sagt Wolfgang Schuhmann. „Allerdings benötigen sie deutlich mehr Energie.“

Die Forscher wollen das Konzept der Kaskadenreaktion in Nanopartikeln nun weiterentwickeln, um selektiv noch wertvollere Produkt wie Ethylen oder Butanol herstellen zu können.

Fakten, Hintergründe, Dossiers
Mehr über Ruhr-Universität Bochum
  • News

    Iodidsalze machen Biokatalysatoren für Brennstoffzellen stabil

    Sauerstoff ist der größte Feind von Biokatalysatoren für die Energieumwandlung. Ein Schutzfilm schirmt sie ab – aber nur mit einer weiteren Zutat: Iodidsalz. Entgegen theoretischen Vorhersagen inaktiviert Sauerstoff Biokatalysatoren für die Energieumwandlung auch unter einem Schutzfilm binn ... mehr

    Katalysatoren einfach aufbringen

    Elektrokatalysatoren können helfen, Chemikalien aus nachwachsenden Rohstoffen zu gewinnen oder alternative Energiequellen zu nutzen. Aber neue Katalysatoren zu testen bringt Herausforderungen mit sich. Eine neue Methode, um Katalysatorpartikel auf winzige Elektroden aufzubringen, haben Fors ... mehr

    Schnelles Screening für potenzielle neue Katalysatoren

    Ein neues Konzept ermöglicht es, in der Überfülle möglicher Elementkombinationen die vielversprechendsten zu erkennen. Der Erfolg der Energiewende hängt stark von effizienten Elektrokatalysatoren ab, zum Beispiel für Brennstoffzellen oder CO2-Reduktion. Spezielle Legierungen aus fünf oder m ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

Mehr über University of New South Wales