28.10.2019 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Magnesiumlegierungen beim Korrodieren zusehen

Abbauverhalten von Magnesiumimplantaten besser vorraussagen

Erstmals konnten ETH-​Forscher die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatwerkstoffe entwickelt werden können.

Magnesium und seine Legierungen halten vermehrt Einzug in die Medizin: einerseits als Material für Implantate in der Knochenchirurgie wie Schrauben oder Platten, andererseits als Material für Stents, um bei kardiovaskulären Eingriffen verengte Herzkranzgefässe aufzuweiten.

Das Leichtmetall hat gegenüber herkömmlichen Implantaten aus Edelstahl, Titan oder Polymeren den Vorteil, dass es bioresorbierbar ist. Somit ist keine zweite Operation nötig, um die Implantate wieder aus dem Körper von Patienten zu entfernen. Magnesium fördert zudem das Knochenwachstum, was die Heilung von Knochenbrüchen aktiv unterstützt.

Reines Magnesium eignet sich allerdings nicht für solche chirurgischen Anwendungen, da es zu weich ist. Um die nötige Festigkeit zu erreichen, müssen daher Legierungselemente hinzugefügt werden. Üblicherweise sind dies Elemente der Seltenen Erden wie Yttrium und Neodym. Da diese jedoch körperfremd sind, können sie sich beim Abbau der Implantate in Organen ansammeln – mit unzureichend verstandenen Folgen. Insbesondere für Kinder sind solche Implantate deshalb ungeeignet.

Körperverträgliche Legierungselemente

Forscher des Labors für Metallphysik und Technologie von ETH-​Professor Jörg Löffler haben daher eine neue Familie von Legierungen entwickelt, welche nebst Magnesium ausschliesslich die Elemente Zink und Kalzium enthalten. Deren Anteil ist in diesen Legierungen mit Absicht sehr gering gewählt und liegt unterhalb von einem Prozent.

Wie Magnesium sind auch diese Elemente biokompatibel und können vom menschlichen Körper resorbiert werden. Je nach Herstellungsverfahren bilden sich in den neu entwickelten Legierungen Ausscheidungen aus, die aus den drei Legierungselementen zusammengesetzt sind. Diese Ausscheidungen sind unterschiedlich häufig und verschieden gross, und messen oft nur wenige Dutzend Nanometer. Für gute mechanische Eigenschaften sind diese jedoch essentiell und beeinflussen möglicherweise die Korrosionsgeschwindigkeit des Materials.

Doch noch steht dem breiten chirurgischen Einsatz dieser körperverträglichen Magnesiumlegierungen ein Hindernis im Weg: Die Forschung weiss zu wenig über die Mechanismen, mit denen die Metallteile im Körper unter sogenannten physiologischen Bedingungen abgebaut werden. Deswegen sind auch brauchbare Voraussagen darüber, wie lange ein solches Implantat im Körper verbleibt, bisher kaum möglich.

Entlegierungsmechanismus erstmals dokumentiert

Mittels analytischer Transmissionselektronenmikroskopie (TEM) konnten Jörg Löffler und seine Kollegen Martina Cihova und Robin Schäublin nun die strukturellen und chemischen Veränderungen von Magnesiumlegierungen unter simulierten physiologischen Bedingungen ab weniger Sekunden bis hin zu Stunden im Detail beobachten, und zwar in einer bisher unerreichten Auflösung von einigen Nanometern. Die Resultate der Studie wurden vor kurzem in der Fachzeitschrift «Advanced Materials» veröffentlicht.

Mithilfe dieser modernen Technik, die an der ETH Zürich durch das Kompetenzzentrum «ScopeM» zur Verfügung steht, konnten die Forscher einen bisher nicht beobachteten Entlegierungsmechanismus («Dealloying») dokumentieren, der den Abbau der Ausscheidungen in der Magnesiummatrix massgeblich bestimmt.

Sie konnten fast in Echtzeit beobachten, wie aus den Ausscheidungen während ihres Kontakts mit simulierter Körperflüssigkeit Kalzium-​ und Magnesiumionen austreten, wohingegen Zinkionen zurückbleiben und sich anreichern. Dadurch verändert sich die chemische Zusammensetzung der Ausscheidungen kontinuierlich. Dies führt bei den Ausscheidungen auch dazu, dass sich ihre elektrochemische Aktivität dynamisch verändert und sie damit den Materialabbau insgesamt beschleunigen.

«Diese Erkenntnis stösst das bisherige Dogma um. Bisher nahm die Forschung nämlich an, dass die chemische Zusammensetzung der Ausscheidungsphasen in Magnesiumlegierungen während der Korrosion unverändert bleibt», sagt Löffler. Diese Annahme habe dazu geführt, dass die meisten Voraussagen über die Dauer des Abbaus falsch waren. «Der von uns beobachtete Mechanismus scheint universell zu sein und wir gehen davon aus, dass er sowohl in anderen Magnesiumlegierungen als auch in anderen aktiven Materialien mit intermetallischen Ausscheidungen auftritt», ergänzt Martina Cihova, Doktorandin von Jörg Löffler und Erstautorin der Studie.

Dank der neuen Erkenntnisse ist es nun möglich, Magnesiumlegierungen so zu designen, dass deren Abbauverhalten im Körper besser vorausgesagt und genauer kontrolliert werden kann. Dies ist essenziell, weil Magnesiumimplantate im Körper von Kindern wesentlich schneller abgebaut werden können als von Erwachsenen. Die Abbaurate von Magnesiumlegierungen für Stents sollte zudem erheblich langsamer sein als die für Knochenplatten oder -​schrauben. «Mit dem Wissen über das detaillierte Korrosionsverhalten sind wir dem Ziel massgeschneiderter Legierungen für unterschiedliche Patienten und medizinische Anwendungen einen entscheidenden Schritt näher gekommen», sagt Cihova. Das Verständnis über die agierenden Korrosionsmechanismen will sie nun im Rahmen ihres Postdoktorats durch elektronenmikroskopische Analysen an in vivo-​Implantaten weiter ausbauen.

Fakten, Hintergründe, Dossiers
Mehr über ETH Zürich
  • News

    Eine neue Theorie für Halbleiter aus Nanokristallen

    ETH-​Forscher haben die erste theoretische Erklärung dafür geliefert, wie elektrischer Strom in Halbleitern aus Nanokristallen geleitet wird. Dadurch könnten in Zukunft neue Sensoren, Laser oder LEDs für Bildschirme entwickelt werden. Seit einigen Jahren kann man Fernsehapparate kaufen, in ... mehr

    Verteilung der Kettenlängen von Polymeren gezielt einstellen

    ETH-​Forscher entwickeln eine neue Methode, um kontrolliert Polymere von unterschiedlicher Länge zu erzeugen. Dies ebnet den Weg für neue Klassen von Kunststoffen, die in bisher undenkbaren Anwendungen eingesetzt werden können. Aus unserem Alltag sind Materialien aus synthetischen Polymeren ... mehr

    Überraschend starkes und verformbares Silizium

    Forscher der ETH Zürich und der Empa haben gezeigt, dass man aus Silizium kleinste Objekte herstellen kann, die deutlich fester und verformbarer sind als bisher gedacht. Dadurch können etwa Sensoren in Handys kleiner und robuster werden. Seit vor sechzig Jahren der Mosfet-​Transistor erfund ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr