02.01.2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Auf Millimetergrösse geschrumpfter David

Zürcher Forscher druckten Michelangelos David als metallene Miniatur

Da steht er auf seinem Sockel: David von Michelangelo. Weltberühmt ist die Skulptur, fast jedes Kind kennt sie. Doch dieser David ist samt Sockel nur ein Millimeter gross und besteht nicht aus Marmor wie das über fünf Meter grosse Original, sondern aus reinem Kupfer.

Geschaffen wurde die Miniatur mittels 3D-​Druck von Giorgio Ercolano von der Firma Exaddon, einer Ausgliederung des ETH-​Spin-offs Cytosurge, zusammen mit dem Team von ETH-​Professor Tomaso Zambelli vom Labor für Biosensorik und Bioelektronik. Zambelli und sein Team entwickelten das genutzte 3D-​Druckverfahren vor wenigen Jahren. Es ist damit möglich, Metallstrukturen im Nano-​ und Mikrometermassstab herzustellen.

Zentraler Bestandteil des Verfahrens ist eine Mikropipette, die an eine Blattfeder (Cantilever) gekoppelt ist, wobei die Kraft beobachtet wird, mit welcher die Spitze der Pipette das Substrat berührt. Damit können die Forscher hochpräzise in Lösung befindliche Metalle auf einer leitenden Grundplatte elektrochemisch abscheiden. Schicht für Schicht können sie so, dank der optischen Kraftmessung automatisiert, in einem Arbeitsgang winzige Metallstrukturen aufbauen. Die Firma Exaddon hat das Mikrometall-​Druckverfahren übernommen und verbessert, insbesondere beschleunigt.

Komplizierte Geometrien druckbar

Um das Potenzial der Technologie aufzuzeigen, druckte Ercolano nun den Mikro-​David. Bislang hätten sie vor allem winzige Säulen oder Spiralen gedruckt. «Das Verfahren erlaubt aber, auch beliebige komplexe Strukturen und Geometrien zu drucken», sagt Ercolano. Die Skulptur wurde in einem einzigen Durchgang, ohne Stützstruktur oder Schablone, gedruckt. Auch mussten die Forscher das Figürchen nach der Fabrikation weder brennen noch härten. Die Resultate präsentierten Ercolano und Kollegen soeben in der Fachzeitschrift Micromachines.

Die Daten der Davidskulptur, die den Drucker steuern, sind frei im Internet verfügbar. «Ich hätte sogar den Raum mitdrucken können, in dem die Statue ausgestellt ist, denn der Datensatz umfasst auch diesen», schmunzelt Ercolano. Um David ohne Ausstellungsraum herzustellen, habe er deshalb den Datensatz bereinigen müssen.

Auflösung setzt untere Grenze

Ercolano druckte David in zwei Grössen: primär als Skulptur von einem Millimeter Grösse und eine, die zehnmal kleiner ist. «Die kleinere Figur ist nur so hoch wie der Sockel der grösseren», sagt der Forscher. Mit der Auflösung stosse man aber bei solch kleinen Strukturen an Grenzen. Das Drucken von metallischen Mikroobjekten beginnt bei einem Mikrometer. Der Hauptbereich für den Druck von komplexeren und detailreichen Mikroobjekten liegt zwischen 100 Mikrometer und einem Millimeter. Auch zeitlich liegen Welten zwischen dem ein Millimeter grossen und dem 10mal kleineren Modell: Um den «grossen» David zu erzeugen, brauchte das Gerät 30 Stunden, für die kleinere Ausgabe 20 Minuten.

Theoretisch lassen sich bis zu fünf Millimeter grosse Objekte mit diesem Drucksystem fabrizieren. Allerdings fasst die Druckpatrone nur einen Mikroliter «Tinte», was gerade für die Herstellung des grösseren Davids reicht. Mit einer Füllung können allerdings hunderte bis tausende von winzigen Objekten gedruckt werden, was der Stärke des Druckverfahrens entspricht.

Fakten, Hintergründe, Dossiers
  • Mikrometall-​Druckverfahren
Mehr über ETH Zürich
  • News

    Unterschätzte chemische Vielfalt

    Ein internationales Forscherteam hat eine globale Bestandsaufnahme aller registrierten Industriechemikalien erstellt: Weltweit werden etwa 350'000 verschiedene Substanzen hergestellt und gehandelt, nicht wie bisher geschätzt nur 100'000. Von gut einem Drittel aller dieser Substanzen fehlen ... mehr

    Schneller Lichtdetektor aus zweidimensionalen Materialien

    Zwei Arbeitsgruppen der ETH Zürich haben gemeinsam einen neuartigen Lichtdetektor entwickelt. Er besteht aus zweidimensional geschichteten Materialien, die an einen Silizium-​Lichtwellenleiter gekoppelt sind. In Zukunft lassen sich mit diesem Ansatz auch Leuchtdioden und Lichtmodulatoren he ... mehr

    Plättchen statt Kügelchen machen Bildschirme sparsam

    ETH-​Wissenschaftler haben die QLED-​Technologie für Bildschirme weiterentwickelt. Sie stellten Lichtquellen her, die zum ersten Mal Licht in hoher Intensität in nur eine Richtung ausstrahlen. Dies verringert Streuverluste, was die Technologie äusserst energieeffizient macht. Seit wenigen J ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr