22.01.2020 - Technische Universität Wien

Terahertz-Strahl bricht Rekorde

An der TU Wien wurde eine neue, extrem effiziente Quelle von Terahertz-Strahlung entwickelt: Laser machen die Luft zum Plasma, dabei entsteht Strahlung mit vielen Einsatzmöglichkeiten.

Terahertz-Strahlen verwendet man bei den Sicherheitschecks am Flughafen, für medizinische Untersuchungen oder auch für Qualitätskontrollen in der Industrie. Allerdings ist Strahlung im Terahertz-Bereich extrem schwer zu erzeugen. An der TU Wien ist es nun gelungen, eine Terahertz-Strahlungsquelle zu entwickeln, die gleich mehrere Rekorde bricht: Sie ist extrem effizient, ihr Spektrum ist sehr breit – sie erzeugt unterschiedliche Wellenlängen aus dem gesamten Terahertz-Bereich. Dadurch ermöglicht sie auch die Herstellung kurzer Strahlungspulse mit sehr hoher Strahlungsintensität. Die neue Terahertz-Technologie wurde nun im Fachjournal Nature Communications präsentiert.

Die „Terahertz-Lücke“ zwischen gewöhnlichen Lasern und Antennen

„Terahertz-Strahlung hat sehr nützliche Eigenschaften“, sagt Claudia Gollner vom Institut für Photonik (Fakultät für Elektrotechnik und Informationstechnik der TU Wien). „Sie kann viele Materialien problemlos durchdringen, ist aber im Gegensatz zur Röntgenstrahlung unbedenklich, weil es sich nicht um ionisierende Strahlung handelt.“

Technisch gesehen befindet sich die Terahertz-Strahlung allerdings gerade im schwer zugänglichen Niemandsland zwischen zwei wohlbekannten Gebieten: Strahlung mit höherer Frequenz kann man mit Hilfe von gewöhnlichen Festkörper-Lasern erzeugen. Strahlung mit niedriger Frequenz, wie wir sie etwa für den Mobilfunk verwenden, wird von Antennen abgestrahlt. Genau dazwischen, im Terahertz-Bereich, liegen die größten Herausforderungen.

In den Laserlabors der TU Wien muss daher einiges an Aufwand betrieben werden, um die gewünschten hochintensiven Terahertz-Strahlungspulse zu erzeugen. „Unser Ausgangspunkt ist die Strahlung eines Infrarot-Lasersystems. Es wurde bei uns am Institut für Photonik entwickelt und ist in seiner Form einzigartig auf der Welt“, sagt Claudia Gollner. Zunächst wird das Laserlicht durch ein sogenanntes „nichtlineares Medium“ geschickt. In diesem Material wird die Infrarot-Strahlung verändert, ein Teil davon wird in Strahlung mit doppelt so hoher Frequenz umgewandelt.

„Nun haben wir also zwei verschiedene Arten von Infrarot-Strahlung. Diese beiden Strahlungsanteile werden dann miteinander überlagert. So entsteht eine Welle, deren elektrisches Feld eine ganz bestimmte asymmetrische Form aufweist“, erklärt Gollner.

Ein Plasma aus heißer Luft

Diese elektromagnetische Welle ist intensiv genug, um Elektronen aus den Molekülen der Luft herauszureißen. Die Luft verwandelt sich in ein glühendes Plasma. Durch die spezielle Form der Infrarot-Welle werden die Elektronen dann so beschleunigt, dass dabei die gewünschte Terahertz-Strahlung entsteht.

„Unsere Methode ist extrem effizient: 2,3 % der zugeführten Energie wird in Terahertz-Strahlung umgewandelt – das ist um Größenordnungen mehr als man mit anderen Methoden erreicht. Das  führt zu außergewöhnlich hohen Terahertz-Energien von beinahe 200 µJ“, sagt Claudia Gollner. Ein weiterer wichtiger Vorteil der neuen Methode ist, dass ein sehr breites Spektrum an Terahertz-Strahlung erzeugt wird. Ganz unterschiedliche Wellenlängen aus dem Terahertz-Bereich werden gleichzeitig emittiert. Dadurch entstehen extrem intensive kurze Strahlungspulse. Je größer das Spektrum unterschiedlicher Terahertz-Wellenlängen, umso kürzere und intensivere Pulse lassen sich generieren.

Große Hoffnung auf zahlreiche Anwendungen

„Damit steht nun erstmals eine Terahertz-Quelle für extrem hohe Strahlungsintensitäten zur Verfügung“, sagt Andrius Baltuska, der Leiter der Forschungsgruppe an der TU Wien. „Erste Experimente mit Zink-Tellurid-Kristallen zeigen bereits, dass sich die Terahertz-Strahlung ausgezeichnet eignet, um materialwissenschaftliche Fragen auf ganz neue Weise zu untersuchen. Wir sind überzeugt davon, dass diese Methode eine große Zukunft hat.“

Fakten, Hintergründe, Dossiers
  • Terahertz-Technologien
Mehr über TU Wien
  • News

    Ein neuer Blick auf „seltsame Metalle“

    Seit Jahren wurde an der TU Wien ein neues Syntheseverfahren entwickelt, um den Geheimnissen der „seltsamen Metalle“ auf die Spur zu kommen. Nun gelang der Durchbruch. Supraleiter können elektrischen Strom völlig ohne Widerstand leiten – allerdings nur unterhalb einer bestimmten „Sprungtemp ... mehr

    Die Industrieanlage, die ihre eigenen Fehler findet

    Wenn unüberblickbar viele Geräte, Sensoren und Datenströme koordiniert werden müssen, ist der Mensch überfordert. TU Wien und AIT zeigen, wie man damit umgeht und dabei der Umwelt hilft. Industrieanlagen werden immer komplexer. Eine gewaltige Zahl mechanischer, elektrischer und elektronisch ... mehr

    Wein, Blut und Motoröl – ein Sensor für viele Flüssigkeiten

    Der Fehrer-Preis der TU Wien geht an den Elektrotechniker Georg Pfusterschmied. Er entwickelte einen Sensor, mit dem man die Dichte und die Viskosität von Flüssigkeiten messen kann. Einen Löffel aus einem Glas Wasser herauszuziehen, ist kein Problem. Befindet sich der Löffel in einem Honig ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr