18.11.2020 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Lichtgesteuerte Nanomaschine regelt die Katalyse

Ein molekularer Motor ermöglicht die Steuerung der Geschwindigkeit chemischer Prozesse durch Lichtimpulse

Die Zukunftsvision der Miniaturisierung hat inzwischen eine Reihe von synthetisch molekularen Motoren hervorgebracht, die von unterschiedlichen Energiequellen angetrieben werden und verschiedene Bewegungen ausführen können. Einer Forschungsgruppe an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), ist es gelungen, über einen lichtgesteuerten Motor eine Katalysereaktion zu steuern. Damit rückt die Vision einer Nanofabrik näher, in der – analog zur biologischen Zelle – verschiedene, frei kombinierbare Maschinen zusammen arbeiten.

Gesetze der Mechanik nicht einfach übertragbar

Definitionsgemäß wandelt ein Motor eine beliebige Energieform in gerichtete Bewegungsenergie um. Auf molekularer Ebene kann zum Beispiel das Protein Myosin mittels chemischer Energie Muskelkontraktionen erzeugen. Inzwischen werden solche Nanomaschinen auch synthetisch hergestellt. Die verwendeten Moleküle sind allerdings um ein Vielfaches kleiner als Proteine und weit weniger komplex.

„Die Gesetze der mechanischen Physik lassen sich nicht einfach auf die molekulare Ebene übertragen“, sagt Prof. Dr. Henry Dube, Lehrstuhl für Organische Chemie I der FAU. So gebe es beispielsweise keine Trägheit. Ausgelöst durch die Brownsche Molekularbewegung sei alles ständig in Bewegung. „Es reicht nicht einen Rotationsmotor anzustoßen, man muss auch eine Art Ratschenmechanismus einbauen, der verhindert, dass er rückwärts läuft.“

2015 ist es Prof. Dube, damals noch an der LMU München, und seinem Team gelungen, einen besonders schnellen, durch sichtbares Licht angetriebenen, molekularen Motor zu entwickeln. Im Jahr 2018 haben diese den ersten molekularen Motor entwickelt, der nur mit Licht angetrieben wird und unabhängig von der Umgebungstemperatur arbeitet. 2019 folgte eine Variante, die nicht nur kreisförmig rotieren kann, sondern eine gerichtete Bewegung in Form einer Acht ausführt. Alle Motoren basieren auf dem Molekül Hemithioindigo, einer unsymmetrischen Variante des natürlich vorkommenden Indigo-Farbstoffs, bei der das Stickstoffatom durch ein Schwefelatom ersetzt ist. Dabei dreht sich ein Molekülteil in mehreren Schritten gerichtet gegenüber dem anderen Molekülteil. Die energiegetriebenen Schritte werden durch sichtbares Licht ausgelöst und verändern die Moleküle in der Weise, dass die Rückreaktionen blockiert sind.

Handelsübliche Katalysatoren im Einsatz

Nach seinem Wechsel an die FAU hat Henry Dube den 2015 entwickelten Rotationsmotor zum ersten Mal zur Steuerung eines separaten chemischen Prozesses genutzt. Er bewegt sich in vier Schritten einmal um die Kohlenstoff-Doppelbindung des Hemithioindigo. Zwei der vier durch eine Photoreaktion ausgelösten Schritte lassen sich zur Kontrolle einer Katalysereaktion nutzen. „Grünes Licht erzeugt eine Molekülstruktur, die einen Katalysator an das Hemithioindigo bindet, blaues Licht gibt den Katalysator wieder frei“, erklärt der Chemiker.

Dabei kommt ein handelsüblicher Katalysator zum Einsatz, der keine Metallatome besitzt. Der Katalysator dockt mittels elektrostatischer Kräfte über eine Wasserstoffbrückenbindung an ein Sauerstoffatom des „Motor-Moleküls“ an. Prinzipiell könnten somit alle Katalysatoren, die eine Wasserstoffbrückenbindung benutzen, verwendet werden. „Ein großer Vorteil des Hemithioindigos besteht darin, dass es aufgrund seiner ureigenen Struktur einen Bindungsmechanismus für Katalysatoren besitzt“, erklärt Prof. Dube. Sonst müsste dieser erst durch chemische Synthese angefügt werden.

Die Drehung des Hemithioindigo-Motors wird durch sichtbares Licht gesteuert. Gleichzeitig erlaubt das System die gezielte Freisetzung und Bindung eines Katalysators, der gewünschte chemische Prozesse beschleunigt beziehungsweise abbremst. „Diese Arbeit stellt damit einen ersten wichtigen Schritt dar, wie molekulare Motoren auf einfache und vielseitige Weise in chemische Prozesse integriert werden können“, sagt Prof. Dube. „So können wir ähnlich wie an einem Fließband die Synthese von komplexen Medikamenten in Zukunft mit größter Präzision von molekularen Maschinen bewerkstelligen lassen.“

Fakten, Hintergründe, Dossiers
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Rekordauflösung in der Röntgenmikroskopie

    Forschern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), des Schweizer Paul-Scherrer-Instituts und weiterer Einrichtungen aus Paris, Hamburg und Basel ist ein Rekord in der Röntgenmikroskopie gelungen: Mit verbesserten Beugungslinsen und exakterer Positionierung der Proben err ... mehr

    Carbin – eine außergewöhnliche Form des Kohlenstoffs

    Welche photophysikalischen Eigenschaften hat Carbin? Das haben Wissenschaftler der FAU, der kanadischen University of Alberta und der schweizerischen Ecole Polytechnique Fédérale de Lausanne gemeinsam untersucht – und ein tiefergreifendes Verständnis für diese außergewöhnliche Form des Kohl ... mehr

    Der kleinste Besen der Welt

    Ein Forschungsteam der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) hat eine neuartige Methode entwickelt, mit der Oberflächen auf der Nanoskala absolut sauber werden. Durch mechanische Kräfte werden dabei auch kleinste Kontaminationen bis zur atomaren Skala entfernt. Die Ergebni ... mehr

  • q&more Artikel

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Andrea Büttner

    Andrea Büttner, Jahrgang 1971, studierte Lebensmittelchemie an der Ludwig-Maximilians-Universität München. Anschließend promovierte und habilitierte sie an der Technischen Universität München im Bereich Aromaforschung. Seit 2007 baute sie am Fraunhofer IVV das Geschäftsfeld Produktwirkung s ... mehr

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr