20.11.2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Wirkungsweise wichtiger Katalysatoren entschlüsselt

Für eine gute katalytische Leistung sind vor allem Vorgänge an der Oberfläche des Katalysators verantwortlich und weniger elektrochemische Vorgänge

Die Spaltung von Wasser in Wasserstoff und Sauerstoff ist eine wichtige chemische Reaktion, auch im Hinblick auf die vermehrte Nutzung von Wasserstoff als Energieträger in nachhaltiger Mobilität. Ein internationales Forscherteam hat nun die Wirkungsweise eines Katalysators entschlüsselt.

Wasserstoff, insbesondere solcher, der «grün» hergestellt wurde durch die Spaltung von Wasser mit erneuerbarem Strom, gilt als Schlüsselelement einer zukünftigen nachhaltigen Mobilität. Einerseits kann Wasserstoff in Brennstoffzellen chemisch reagieren und zur Gewinnung elektrischer Energie benutzt werden. Damit können Elektromotoren angetrieben werden. Andererseits kommt er bei der Herstellung von synthetischen Flüssigtreibstoffen zum Einsatz.

Die Spaltung von Wasser mittels Strom (Elektrolyse) erfolgt durch zwei Reaktionen, von denen die eine nicht ohne die andere stattfinden kann: Die Entstehung von Wasserstoff und jene von Sauerstoff an je einem elektrischen Pol (Elektrode). Wasserstoffentwicklung und Sauerstoffentwicklung nennen Chemiker die beiden Teilreaktionen. Um den Gesamtprozess energieeffizienter zu gestalten, forschen Wissenschaftler am Einsatz neuer Materialien, die katalytisch wirken und somit die Teilreaktionen begünstigen. Diese sollen im Bereich der Elektroden zum Einsatz kommen.

Oberflächenchemie massgebend

«Bei der Erarbeitung von Katalysatoren für die beiden Teilreaktionen ist die Sauerstoffentwicklungsreaktion die weit grössere Herausforderung», sagt Javier Pérez-​Ramírez, Professor für Katalyse-​Engineering an der ETH Zürich. In einer neuen Arbeit hat ein internationales Forschungsteam unter Leitung des Fritz-​Haber-Instituts der Max-​Planck-Gesellschaft in Berlin und unter Mitwirkung der ETH Zürich nun grundlegend neue Kenntnisse zu Katalysatormaterialien dieser Sauerstoffentwicklungsreaktion gewonnen: Die Wissenschaftler konnten zeigen, dass für eine gute katalytische Leistung vor allem Vorgänge an der Oberfläche des Katalysators verantwortlich sind und weniger elektrochemische Vorgänge.

«Auch wenn es sich bei der untersuchten Reaktion um eine spezielle Form der Katalyse handelt, nämlich der Elektrokatalyse, folgt sie den bekannten Gesetzen von traditionellen katalytischen Reaktionen», sagt Guido Zichittella, Wissenschaftler in Pérez-​Ramírez’ Gruppe. Diese Erkenntnis ist neu, denn bisher vermuteten Wissenschaftler, dass vor allem elektrochemische Vorgänge die Leistungsfähigkeit elektrokatalytischer Reaktionen bestimmen.

Katalysatoren mit bestimmter Aktivität

Die Wissenschaftler benutzten in ihrer Studie als Katalysator jenes Material, das heute in Forschungslabors für diese Reaktion am häufigsten verwendet wird: Iridiumoxid. ETH-​Professor Pérez-​Ramírez und seine Gruppe stellten Katalysatoren mit unterschiedlicher Aktivität her. Sie ersetzten dabei im Katalysator unterschiedliche Mengen von katalytisch aktiven Sauerstoffatomen durch katalytisch inaktive Chloratome. Diese Katalysatoren ermöglichten es, die Effekte der Oberflächenchemie getrennt von Effekten der Elektrochemie zu untersuchen.

Die neue Erkenntnis könnte bei der Entwicklung von leistungsfähigeren Elektrokatalysatoren sowie der Suche nach neuen, billigeren Katalysatormaterialen helfen, um auf nachhaltige, energieeffiziente und günstige Weise Wasserstoff herzustellen.

An dieser Forschungsarbeit waren Wissenschaftler des Fritz-​Haber-Instituts der Max-​Planck-Gesellschaft, der Technischen Universität Berlin, des Max-​Planck-Instituts für Chemische Energiekonversion, der ETH Zürich und des Istituto officina dei materiali in Triest beteiligt.

Fakten, Hintergründe, Dossiers
  • Wasserspaltung
  • Oberflächenchemie
Mehr über ETH Zürich
  • News

    Biochemische Zufallszahl

    Bei der Verschlüsselung von Information sowie für Spielautomaten werden echte Zufallszahlen benötigt. Das sind Zahlen, die tatsächlich zufällig sind und von niemandem erraten werden können, auch nicht von Personen, welche detaillierte Kenntnisse haben von der Methode, mit der sie generiert ... mehr

    40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

    Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit entdeckt, Propylen in Propylenoxid, eine wichtige Grundchemikalie in der Chemieindustrie, umzuwandeln. Jetzt hat ein Wissenschaftlerteam der ETH Zürich, der Universität ... mehr

    Weg frei für biobasierte Flipflops

    Bioplastik liegt im Trend. Für Produkte mit Schaumstoffen gibt es aber noch wenige nachhaltige Alternativen. ETH-​Pioneer-Fellow Zuzana Sediva entwickelt ein Verfahren, das aus organischem Abfall dereinst elastische Schuhsohlen oder Yogamatten machen soll. Zuzana Sediva hat eine Vorliebe fü ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr