09.12.2020 - Max-Planck-Institut für Eisenforschung

Atomweise Analyse von gefrorenem Wasser

Durchbruch in der Materialwissenschaft

Wie kann man Eis bis auf die atomare Ebene analysieren? Und wie kann man in Eis eingebettete Objekte analysieren, ohne es zu schmelzen? Ein internationales Team von Materialwissenschaftlern, hauptsächlich vom Max-Planck-Institut für Eisenforschung (MPIE), hat einen Weg gefunden, mikrometerdicke Eisschichten mit Hilfe der Atomsonden-Tomographie (atom probe tomography, APT) zu analysieren und dabei Einblicke in seine Mikrostruktur und chemische Zusammensetzung zu gewinnen. Die MPIE-Wissenschaftler Dr. Ayman El-Zoka, Se-Ho Kim, Dr. Leigh Stephenson und Dr. Baptiste Gault aus der Gruppe "Atomsonden-Tomographie" und ihre Kollegen von der Université de Lyon (Frankreich) und der University of Toronto (Kanada) veröffentlichten ihre neuesten Ergebnisse in der Zeitschrift Science Advances.

"Um Materialien mittels Atomsonde zu analysieren, verwenden wir normalerweise einen fokussierten Ionenstrahl, um eine nadelförmige Probe von nur 70 Nanometern zu fräsen. Diese Spitze wird dann unter einen elektrischen Strom gesetzt, der bewirkt, dass die Probe Atom für Atom verdampft, während sie von einem Detektor erfasst wird. Wir mussten eine völlig neue Technik entwickeln, um Eis zu analysieren, ohne seine Mikrostruktur durch die Probenpräparation zu beeinflussen und seine mangelnde elektrische Leitfähigkeit zu umgehen", erklärt El-Zoka, Erstautor der Publikation. "Wir lösten Silber aus einer Silber-Gold-Mischkristalllösung unter sauren Bedingungen auf und konnten so eine offenporige 3D-Nanostruktur bilden". Mit den so entstandenen porösen Goldstrukturen, dem so genannten nanoporösen Gold, betteten die Wissenschaftler Eis in seine Poren ein und analysierten es mittels Atomsonden-Tomographie. Dieses Material wurde u.a. für Anwendungen in der Katalyse und Elektrochemie entwickelt, wurde aber bisher noch nie für die Atomsonden-Tomographie eingesetzt. "Die Anwendung dieser Technik ebnet den Weg für die Analyse von gelösten Effekten in eingefrorenen Nano-Objekten und biologischen Materialien in ihrer nativen Umgebung", erklärt Gault, Leiter der Atomsondengruppe. "Team ice", wie die Gruppe nun von ihren MPIE-Kollegen genannt wird, ist nun in der Lage, die Zusammensetzung gelöster Stoffe an Korngrenzen im Eis zu messen. Diese Verunreinigungen werden die Bruchreaktion des Eises beeinflussen, was weitreichende Auswirkungen auf das Schmelzverhalten des Eises z.B. von den Polen aus haben könnte.

Die Forscher zielen darauf ab, die Technik hinsichtlich der Veränderung der Porengröße, des nanoporösen Metalls und der Abkühlungsrate weiter zu optimieren, um amorphes Eis zu erhalten, das ein Objekt und seine Umgebung vollständig einfrieren kann.

  • A. A. El-Zoka, S.-H. Kim, S- Deville, R. C. Newman, L. T. Stephenson, B. Gault; "Enabling near-atomic-scale analysis of frozen water"; Science Advances 6 (2020)

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
Mehr über MPI für Eisenforschung
  • News

    Design zuverlässiger nano- und mikroelektronischer Systeme

    Silizium verhält sich spröde wie Glas, dennoch ist es das Material auf das wir uns täglich in einer Vielzahl von wichtigen Anwendungen verlassen - egal ob es sich um die Elektronik in unserem Handy handelt, die Datenspeicher in unseren Laptops oder wichtige Sensoren im Auto. Seit kurzem hat ... mehr

    Was im Stahl für Ordnung sorgt

    Kohlenstoffatome spielen für die Festigkeit von Stahl eine wichtige Rolle. Doch auch in Stählen, die schon seit Jahrzehnten im Einsatz sind, war das kollektive Verhalten dieser Atome bisher nicht vollständig verstanden. Eine gemeinsame Arbeit an der Ruhr-Universität Bochum (RUB) und dem Max ... mehr

    Düsseldorfer Materialforscher wird europäischer Science Slam Champion

    Aniruddha Dutta, Doktorand am Max-Planck-Institut für Eisenforschung (MPIE) und amtierender deutscher Science Slam Meister 2018/19, konnte sich gegen seine europäische Konkurrenz durchsetzen und gewann die europäische Meisterschaft am 27. September in Wien, Österreich. Seine Konkurrenz best ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Eisenforschung

    Am Max-Planck-Institut für Eisenforschung GmbH (MPIE) wird Forschung auf dem Gebiet von Eisen, Stahl und verwandten Werkstoffen wie Nickel, Titan und intermetallische Phasenlegierungen betrieben. Ein wesentliches Ziel der Untersuchungen ist ein verbessertes Verständnis der komplexen physika ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Neue Klasse von stabilen Nickel-Komplexen entwickelt

    60 Jahre nach Entdeckung des Nickeleffektes am MPI für Kohlenforschung hat das Team um Josep Cornellà am Mülheimer Institut nun einfach herzustellende und stabile Nickel-Stilben Komplexe entwickelt. Die Komponenten sorgen bei Anwendern für hohe Aufmerksamkeit und die Lizensierung läuft äuße ... mehr

    Superintelligente Maschinen wären nicht kontrollierbar

    Maschinen, die Autos steuern, Symphonien komponieren oder Menschen im Schach besiegen, faszinieren uns. Während in der Künstlichen Intelligenz (KI) ständig neue Fortschritte gemacht werden, gibt es von Seiten der Wissenschaft und der Philosophie auch Warnungen vor den Gefahren einer unkontr ... mehr

    'Kicken' der Atome induziert transparenten Zustand

    Alle photoelektronischen Geräte funktionieren auf der Grundlage, dass die Materialien in ihnen Licht absorbieren, übertragen und reflektieren. Das Verständnis der Photoeigenschaften eines bestimmten Materials auf atomarer Ebene hilft nicht nur bei der Auswahl geeigneter Materialien für eine ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr