16.12.2020 - Universität Wien

Wenn weniger mehr ist: Eine einzige Lage von Atomen genügt, um Licht zu manipulieren

Strukturen, die um nur eine einzige Schicht von Graphen gebaut sind, ermöglichen starke optische Nichtlinearitäten

Eine breite Palette von Technologien – von Lasern und optischer Telekommunikation bis hin zu Quantencomputern – beruht auf nichtlinearen optischen Wechselwirkungen. Typischerweise werden diese nichtlinearen Wechselwirkungen, die es beispielsweise einem Lichtstrahl erlauben seine Frequenz zu ändern, durch Volumenmaterial realisiert. In einer neuen Studie hat nun ein internationales Forschungsteam unter der Leitung der Universität Wien gezeigt, dass auch Strukturen, die um nur eine einzige Schicht von Graphen gebaut sind, starke optische Nichtlinearitäten ermöglichen. Das Team erreichte dies, indem es nanometerkleine Goldbänder verwendete, um Licht in Form von Plasmonen in atomar dünnes Graphen zu quetschen. Die in der Zeitschrift Nature Nanotechnology veröffentlichten Ergebnisse stellen eine neue Familie ultrakleiner regelbarer nichtlinearer Bauelemente in Aussicht.

In den letzten Jahren entwickelten Wissenschafter in gemeinsamen Bestrebungen plasmonische Bauelemente, mit denen Licht manipuliert und durch nanometerkleine Geräte übertragen werden kann. Das Ausnützen von Plasmonen, die im Material durch die Interaktion mit Licht entstehen, ermöglicht starke nichtlineare Wechselwirkungen, die eine maßgebliche Rolle in optischer Kommunikation spielen. Eine technologische Herausforderung von Metallplasmonen in den Bauelementen liegt in ihrer häufig sehr kurzen Lebensdauer, wodurch effektive optische Nichtlinearitäten begrenzt sind. In einer neuen Arbeit zeigen Forscher*innen jedoch, dass die Lebensdauer von Plasmonen in Graphen ausreichend lang ist, um eine starke Nichtlinearität zu erzeugen, mit der Lichtfrequenzen effizient manipuliert werden können.

In ihrem Experiment verwendete das Forschungsteam unter der Leitung von Philip Walther an der Universität Wien in Zusammenarbeit mit Forschern des Barcelona Institute of Photonic Sciences, der University of Southern Denmark, der University of Montpellier und des Massachusetts Institute of Technology Stapel atomar dünner Materialien, so genannte Heterostrukturen, um ein nichtlineares plasmonisches Element zu bauen. Sie nahmen eine einzelne Atomschicht von Graphen und lagerten darauf eine Anordnung von metallischen Nanobändern ab. Die Metallbänder verstärkten das einfallende Licht in der Graphenschicht und wandelten es in Graphenplasmonen um. Diese Plasmonen wurden dann unter den Goldnanobändern gefangen und erzeugten durch einen Prozess, der als Frequenzkonversion bekannt ist, Licht verschiedener Frequenz bzw. verschiedener Farben. Die Wissenschafter untersuchten das erzeugte Licht und zeigten, dass die nichtlineare Wechselwirkung zwischen den Graphenplasmonen entscheidend für die Beschreibung der Frequenzkonversion war. Irati Alonso Calafell, Hauptautorin der Veröffentlichung in Nature Nanotechnology, erläutert: „Wir haben gezeigt, dass die relativ einfachen Goldnanobänder gleichzeitig die Nichtlinearität von Graphen erhöhen und Graphenplasmonen anregen können".

Obwohl das Gebiet der Graphen-Plasmonik noch in seinen Anfängen steckt, sind die Forscher zuversichtlich, dass diese Ergebnisse genutzt werden könnten, um neue Physik in Graphen-Heterostrukturen zu erforschen und zu einer Vielzahl von Anwendungen zu führen. Lee Rozema, einer der am Projekt beteiligten Wissenschafter bringt es auf den Punkt: "Unser Team in Wien hat bereits früher vorgeschlagen, nichtlineare Wechselwirkungen, die durch Graphenplasmonen übermittelt werden, für Quanten-Computing zu nutzen. Jetzt haben wir experimentell bestätigt, dass diese Plasmonen tatsächlich nichtlinear wechselwirken können.“ Das Team plant, noch effizientere Graphen-Heterostrukturen weiter zu forcieren, indem es mit neuen Metallgeometrien experimentiert und verschiedene Arten von nichtlinearen Wechselwirkungen ausschöpft.

Fakten, Hintergründe, Dossiers
  • Plasmonik
Mehr über Universität Wien
  • News

    Von der Straße auf den Teller: Salat nimmt giftige Zusatzstoffe aus Reifenabrieb auf

    Wind, Klärschlamm und gereinigtes Abwasser tragen Reifenabriebpartikel von den Straßen auf Ackerflächen. Eine neue Laborstudie zeigt: Die in den Partikeln enthaltenen Schadstoffe könnten in das dort angebaute Gemüse gelangen. Forscher*innen des Zentrums für Mikrobiologie und Umweltsystemwis ... mehr

    Der "idealen" chemischen Reaktion einen Schritt näher

    Chemische Synthese befasst sich mit der Herstellung wertvoller Produkte aus einfachen und zugänglichen Substanzen. Alkaloide, also auf Kohlenstoff und Stickstoff basierende Moleküle, gehören zu einer Gruppe besonders begehrter Produkte, z.B. als Bestandteil von Pharmazeutika. Eine Gruppe um ... mehr

    Start für Masterstudiengang Green Chemistry

    Green Chemistry ist ein gemeinsam eingerichtetes englischsprachiges Masterstudium zwischen der Universität Wien, der Technischen Universität Wien und der Universität für Bodenkultur Wien. Mit dem Wintersemester 2022 startet das neue Studium in die Pilotphase. Dieser erste Meilenstein einer ... mehr

  • q&more Artikel

    Superfood & Alleskönner?

    Egal, ob die Web-Community abnehmen oder sich gesund ernähren will, Chia, das Superfood, ist immer dabei und gilt manchen als „Alleskönner“. Einschlägige Internet-Foren kommunizieren die verschiedensten Rezepte von Chia-Pudding und Chia Fresca, gefolgt von solchen für Muffins und sogar Marm ... mehr

  • Autoren

    Prof. Dr. Susanne Till

    Jg. 1955, ist Universitätslehrerin und seit über 30 Jahren am Department für Ernährungswissenschaften der Universität Wien. Schwerpunkte in der Lehre der promovierten Biologin (Hauptfach Botanik) sind Botanik und Biologie, Gewürze und einheimische Wildpflanzen in der Humanernährung sowie Qu ... mehr