14.01.2021 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Klimapositive Geschäftsideen in die Realität umsetzen

Start-ups stellen klimaneutrale Treibstoffe aus Luft und Sonnenlicht her und verwandeln Kohlendioxid zu Stein

An der ETH Zürich wagen sich zusehends mehr Forschende mit ihren Erkenntnissen aus dem Labor in die Praxis. Mit ihren Firmen wollen die Gründer direkt dazu beizutragen, den Anstieg des Kohlendioxid-​Gehalts in der Atmosphäre zu drosseln.

Die «eindeutige Erwärmung des Klimasystems» ist im fünften Weltklimabericht des IPCC (Intergovernmental Panel on Climate Change) gut dokumentiert: Noch nie in den letzten 800.000 Jahren war die Konzentration von Treibhausgasen in der Atmosphäre so hoch wie heute. Seit 1750 hat die Menschheit 555 Milliarden Tonnen Kohlenstoff freigesetzt, dadurch ist der Kohlendioxid-​Gehalt der Atmosphäre im Vergleich zur vor-​industriellen Konzentration um 40 Prozent gestiegen. Gleichzeitig hat die Durchschnittstemperatur der Erdoberfläche zwischen 1880 und 2012 um 0,85 Grad Celsius zugenommen. Weil die weltweiten Schnee-​ und Eismengen wegschmelzen, schwellen die Meeresspiegel – im Schnitt um drei Millimeter pro Jahr – an.

Die Wissenschaft ist sich einig, dass die Menschheit alles in ihrer Macht Stehende unternehmen muss, um den Anstieg der Treibhausgas-​Konzentrationen zu drosseln oder sogar wieder umzukehren. An der ETH Zürich weisen Forschende zusehends nicht nur mögliche Beiträge zur Schonung des Klimas auf, immer mehr wagen sich auch aus der Akademie – und verwenden ihre Energie, um klimapositive Geschäftsideen in die Realität umzusetzen. Von den 242 Spin-​offs, die seit 2010 an der ETH Zürich entstanden sind, tragen 34 Unternehmen dazu bei, die Klimaerwärmung zu stoppen. Schauen wir uns zwei Beispiele, eins aus der Energiebranche, das andere aus dem Bausektor, etwas genauer an.

Klimaneutrale Treibstoffe aus Luft und Sonnenlicht

Seit seiner Gründung im Jahr 2016 entwickelt Synhelion eine – wie Zauberei anmutende – Solartechnologie, mit der sich der Verbrennungsprozess umkehren lässt. Nur aus Luft und Sonnenlicht will das Unternehmen synthetische flüssige Kraftstoffe gewinnen. Diese Solartreibstoffe setzen bei der Verbrennung nur so viel CO2 frei, wie zuvor der Luft entnommen wurde. Sie haben daher das Potenzial, die Transportindustrie praktisch klimaneutral zu machen. Aktuell bläst der gesamte Flug-​, Schiff-​ und Strassenverkehr ungefähr acht Milliarden Tonnen Kohlendioxid in die Atmosphäre und ist damit für einen Viertel der menschengemachten CO2-​Emissionen verantwortlich.

«Wir glauben, dass flüssige Solartreibstoffe ein wichtiges Element in der Energiewende sind», sagt Gianluca Ambrosetti, der CEO von Synhelion. In der Tat kann kein anderer Energieträger auch nur ansatzweise mit flüssigen Treibstoffen mithalten, wenn es um die Energiedichte, aber auch um die Langzeit-​Speicherung geht. «Hinzu kommt, dass unsere Solartreibstoffe eine Drop-​in-Technologie sind, für die keine zusätzliche Infrastruktur aufgebaut werden muss», sagt Ambrosetti. «Unsere Kraftstoffe können in den bereits bestehenden Raffinerien aufbereitet und über das vorhandene Tankstellen-​Netz verteilt werden.»

Mehrtausendfach konzentrierte Sonnenstrahlung

Die ausgeklügelte Solartechnologie von Synhelion fusst auf drei Neuerungen, die alle ursprünglich in der Forschungsgruppe um Aldo Steinfeld, Professor für Erneuerbare Energieträger an der ETH Zürich, erfunden wurden – und nun von Synhelion weiterentwickelt werden. Erstens: Der Solar Receiver, ein schwarzer Hohlraum hinter einem durchsichtigen Quarzglas. Hier trifft die von Spiegeln mehrtausendfach konzentrierte Sonnenstrahlung ein – und erhitzt das Transportgas auf weit über 1000 Grad Celsius. Zweitens: Der keramische thermochemische Reaktor, der – wenn er vom heissen Transportgas genügend aufgeheizt ist – Wasser und Kohlendioxid aufspalten und in eine Mischung aus Wasserstoff und Kohlenmonoxid, in so genanntes Syngas, umwandeln kann. (Das Syngas kann mittels konventioneller Verfahren zu unterschiedlichen flüssigen Treibstoffen, etwa Methanol, Benzin oder Kerosin, weiterverarbeitet werden.) Und drittens: Ein thermischer Energie-​Speicher, der auch nachts und an bewölkten Tagen für den Betrieb des Reaktors sorgt.

Vor eineinhalb Jahren hat das Team um Steinfeld auf dem Dach des Maschinenlaboratoriums der ETH Zürich eine Mini-​Raffinerie-Anlage aufgestellt, die rund einen Deziliter Methanol pro Tag produziert. «Damit haben wir bewiesen, dass die Herstellung von nachhaltigem Treibstoff aus Sonnenlicht und Luft auch unter realen Bedingungen funktioniert», sagt Steinfeld.

Als Nächstes gelte es nun, die Prozesse zu skalieren, die Effizienz zu steigern – und die Kosten zu senken, sagt Ambrosetti. Zweifeln an der Skalierbarkeit begegnet Ambrosetti mit einem gewissen Verständnis. «Bis wir die Technologie im industriellen Massstab einsetzen können, dauert es mindestens noch fünf Jahre.» Deshalb setzt Synhelion auf eine Zwischenlösung, das sogenannte Solar Upgrading, um die Zeit bis zur Markteinführung zu verkürzen. «Wenn wir zum Gasgemisch aus Wasser und Kohlendioxid zusätzlich Methan hinzufügen, kann die thermochemische Umwandlung in Syngas bereits ab 800 °C erfolgen», sagt Ambrosetti. «Dank dieser Vereinfachung sollten wir schon in zwei Jahren in der Lage sein, zu einem wettbewerbsfähigen Preis Solartreibstoffe herzustellen, die netto nur halb so viel CO2 freisetzen wie fossile Brennstoffe.»

Kohlendioxid zu Stein verwandeln

Eine völlig andere Idee liegt dem Geschäftsmodell von Neustark zugrunde: Das 2019 gegründete ETH-​Spin-off treibt eine Technologie voran, mit der aus Betonbruch hochwertiger Kalkstein gewonnen – und dabei Kohlendioxid zu Stein verwandelt und dauerhaft eingelagert – werden kann. «Im Baubereich hat die Industrie bisher nur kleine Emissionsreduktionen erzielt, weil ein grosser Teil der Forschungserkenntnisse schubladisiert wird und nicht zur Anwendung gelangt», sagt Johannes Tiefenthaler, einer der beiden Gründer von Neustark. «Ich möchte meine Energie, die ich in mein Doktorat stecke, verwenden, um etwas zu bewirken.»

Schon während seiner Masterarbeit hat sich Tiefenthaler mit verschiedenen Möglichkeiten beschäftigt, wie man Kohlendioxid mit mineralischen Stoffen reagieren lassen und in Karbonatgestein umwandeln kann. Eigentlich gäbe es genug mineralische Stoffe auf der Erde, um mehrere Hundert Milliarden Tonnen Kohlendioxid zu binden. Doch weil diese Materialien, etwa Magnesiumsilikate, nicht besonders reaktiv seien, müssten sie zuvor auf 700 Grad Celsius aufgeheizt werden, führt Tiefenthaler aus. Im Gegensatz dazu habe sich in Betongranulat gebrochenes Rückbaumaterial als hochreaktiv erwiesen, wegen der insgesamt riesigen Oberfläche der vielen millimeterkleinen Partikel. Auch ohne Vorbehandlung forme der Betonbruch mit dem Kohlendioxid sehr stabile chemische Verbindungen.

«Mich hat gereizt, dass die Lösung nicht erst in fünf oder zehn Jahren, sondern schon jetzt greifbar ist», sagt der andere Gründer von Neustark, der Ökonom Valentin Gutknecht. Für ihn liege im Moment die grösste Herausforderung darin, zwischen vielen verschiedenen Themenbereichen zu jonglieren, sagt Gutknecht. «Wir müssen nicht nur die Betoneigenschaften im Griff haben, sondern uns auch auf den verschlungenen Pfaden der CO2-​Zertifizierungen zurechtfinden.»

Negative CO2-​Emissionen, die einen wirtschaftlichen Gewinn bringen

Während Tiefenthaler am Departement Maschinenbau und Verfahrenstechnik an der nächsten Technologiegeneration für die Mineralisierung von Kohlendioxid tüftelt, kümmert sich Gutknecht mit einem immer grösser werdenden Team um die operativen Aspekte: In einem vom Bundesamt für Umwelt und der Klimastiftung Schweiz unterstützten Projekt hat Neustark auf dem Gelände des Betonwerks Kästli im bernischen Rubigen eine Pilotanlage in der Form eines leuchtend orangen Containers installiert. In diesem Container wird das Abbruchmaterial aus alten Betonbauten von flüssigem CO2 umströmt. Nach einem rund zweistündigen Kohlendioxidbad sehen die Altbetonbruchstücke zwar immer noch gleich aus, sie wiegen aber deutlich mehr, weil sie in den feinen Poren ihrer spröden Oberfläche etwa zehn Kilogramm CO2 pro Kubikmeter aufgesogen haben.

Dabei geht das Kohlendioxid eine chemische Bindung mit dem im Altbeton enthaltenen Calciumoxid ein. So entstehen Kalksteinkristalle, die die Eigenschaften des Betonbruchs entscheidend verfeinern: Wenn das Betonwerk aus dem behandelten Abbruchmaterial Recycling-​Beton mischt, braucht es weniger Zement, um dieselbe Festigkeit zu erreichen. Die weltweite Betonproduktion entlässt jährlich mehr als zwei Milliarden Tonnen Kohlendioxid in die Luft – und macht damit etwa sieben Prozent der anthropogenen CO2-​Emissionen aus. Wenn die Technologie von Neustark also hilft, den Zementbedarf im Bauwesen zu verringern, verbessert sich dessen CO2-​Bilanz, weil ein Teil der Emissionen aus der Zementherstellung vermieden werden kann.

Doch Gutknecht und Tiefenthaler weisen beide auf einen zusätzlichen Aspekt hin: Mit ihrem Trick, Kohlendioxid aus der Luft zu entnehmen – und es in die Poren des Betongranulats zu stopfen und als Kalkstein dauerhaft zu binden, können sie CO2-​Emissionen sogar rückgängig machen. «Es gibt nur ganz wenige technische Ansätze für echte negative Emissionen», sagt Tiefenthaler. Die Anwendung dieser Ansätze hält sich bislang in Grenzen, insbesondere weil überzeugende Anreiz-​ und Geschäftsmodelle fehlen. «In dieser Hinsicht ist unser Vorgehen einmalig, weil wir zeigen, dass sich mit dem Binden von Kohlendioxid ein Mehrwert schaffen lässt», sagt Gutknecht. «Die verfeinerten Eigenschaften des Betonabbruchs belegen, dass negative Emissionen nicht nur kosten – sondern sogar einen wirtschaftlichen Gewinn bringen – können», sagt Gutknecht.

Fakten, Hintergründe, Dossiers
  • Beton
Mehr über ETH Zürich
  • News

    Wie fliegen wir künftig klimaneutral?

    Eine klimaneutrale Luftfahrt ist möglich. Doch auch in Zukunft dürften Flugzeuge mit fossilen Treibstoffen betrieben werden. Das ausgestossene CO2 muss konsequent im Untergrund gespeichert werden. Es ist politisch ausgemacht und aus Klimaschutzgründen notwendig, dass unsere ganze Volkswirts ... mehr

    Biochemische Zufallszahl

    Bei der Verschlüsselung von Information sowie für Spielautomaten werden echte Zufallszahlen benötigt. Das sind Zahlen, die tatsächlich zufällig sind und von niemandem erraten werden können, auch nicht von Personen, welche detaillierte Kenntnisse haben von der Methode, mit der sie generiert ... mehr

    Wirkungsweise wichtiger Katalysatoren entschlüsselt

    Die Spaltung von Wasser in Wasserstoff und Sauerstoff ist eine wichtige chemische Reaktion, auch im Hinblick auf die vermehrte Nutzung von Wasserstoff als Energieträger in nachhaltiger Mobilität. Ein internationales Forscherteam hat nun die Wirkungsweise eines Katalysators entschlüsselt. Wa ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

Mehr über Synhelion
  • News

    Neue solare Mini-Raffinerie

    Forscher der ETH Zürich haben die Technologie entwickelt, die aus Sonnenlicht und Luft flüssige Treibstoffe herstellt. Zum ersten Mal weltweit demonstrieren sie die gesamte thermochemische Prozesskette unter realen Bedingungen. Die neue solare Mini-Raffinerie steht auf dem Dach des Maschine ... mehr

  • Firmen

    Synhelion SA

    Synhelion hat sich zum Ziel gesetzt, fossile Brennstoffe durch wirtschaftlich tragfähige, CO2-neutrale Drop-in-Kraftstoffe zu ersetzen, die zu 100% mit der derzeitigen globalen Kraftstoffinfrastruktur kompatibel sind. Die Lösungen von Synhelion kombinieren modernste Solarturmsysteme mit ei ... mehr