24.02.2021 - Universität Ulm

Was Lithium-Akkus explosiv macht

Neues Modell erklärt Dendritenwachstum in Batterien

Brennende Smartphones oder sogar Elektroautos sind nicht nur Gegenstand etlicher YouTube-Videos. Weltweit gehen Forschende den Auslösern solcher Batteriebrände nach. Dabei handelt es sich oftmals um astartige Auswüchse ("Dendriten"), die beim Aufladen der Akkus entstehen. Bisher war allerdings nicht bekannt, warum Metalle wie Lithium Dendriten bilden, Silber oder Kupfer hingegen nicht. Nun haben die Chemiker Prof. Wolfgang Schmickler und Dr. Elizabeth Santos von der Universität Ulm ein Modell auf atomarer Ebene entwickelt, das erklärt, wie und warum Dendriten entstehen.

Lithiumbasierte Batterien sind extrem leistungsfähig – und womöglich hochexplosiv! Beim wiederholten Aufladen eines solchen Akkus bilden sich eventuell so genannte Dendriten, die einen Kurzschluss auslösen können: die Batterie geht in Flammen auf. Jetzt haben Chemiker der Universität Ulm ein Modell entwickelt, das erklärt, wie und warum bestimmte Metalle bei der Abscheidung Dendriten bilden. Dieser für die Batterieforschung bedeutende wissenschaftliche Beitrag ist als „Hot paper“ in der Fachzeitschrift „Angewandte Chemie“ erschienen.

Um die Energiewende zu meistern und die Elektromobilität voranzubringen, braucht die Welt neue, hochleistungsfähige Batterien. Bisher treiben vor allem Lithium-Ionen-Akkus Smartphones, Laptops oder Elektroautos an. Doch gerade für die Anforderungen der Elektromobilität ist die Leistungsfähigkeit dieser Batterien begrenzt. Das Problem: Um Kurzschlüsse zu vermeiden, sind Lithium-Ionen in Graphit eingelagert, was das Volumen und Gewicht der Akkus erhöht – und die Reichweite entsprechend sinken lässt. Batterien mit einer reinen Lithium-Elektrode hätten zwar eine deutlich höhere Energiedichte, neigen jedoch zur Dendritenbildung. Diese astartigen Auswüchse entstehen allmählich beim Aufladen der Batterie an der negativen Elektrode. Wenn sie die Gegenelektrode erreichen, können diese Dendriten im Zusammenspiel mit entflammbaren Elektrolyten einen Kurzschluss verursachen – die Batterie brennt ab. Mit diesem Phänomen beschäftigen sich nicht nur YouTube-Videos, sondern Forschende weltweit. Bisher ist allerdings noch nicht verstanden, warum Metalle wie Lithium Dendriten bilden, Kupfer oder beispielsweise Silber jedoch nicht. Weitere Materialien formieren die gefährlichen Kristallstrukturen erst bei sehr großer Spannung. Doch jetzt haben Professor Wolfgang Schmickler und Dr. Elizabeth Santos vom Institut für Theoretische Chemie der Universität Ulm ein Modell entwickelt, das die Entstehung der astartigen Dendriten erklärt.

Auf dem Ulmer Supercomputer JUSTUS 2 haben die Forschenden quantenchemische Berechnungen mithilfe einer Weiterentwicklung der Density-functional theory (DFBT+) durchgeführt. Ihre Ergebnisse legen folgendes Szenario für die Dendritenbildung nahe: Jedes Metall verfügt über einen so genannten Ladungsnullpunkt. Wird das Metall bei Potentialen unterhalb dieses Ladungsnullpunkts – also bei einer negativ geladenen Elektrode – abgeschieden, entstehen die kristallartigen Dendriten. „Bei der Abscheidung bilden sich immer wieder kleine Unebenheiten wie Vorsprünge auf der Oberfläche. Den Gesetzen der Elektrostatik folgend, konzentriert sich die negative Ladung auf den Spitzen solcher Cluster und zieht die positiv geladenen Lithium-Ionen an. Somit wachsen diese Spitzen weiter und bilden schließlich Dendriten“, erklärt Professor Schmickler. Darüber hinaus konnten die Forschenden ein weiteres Phänomen nachweisen, das zur Dendritenbildung beiträgt: Die negative Ladung verkleinert die Oberflächenspannung und fördert damit die Entstehung von Vorsprüngen auf der Oberfläche. Santos und Schmickler vergleichen diesen Vorgang mit Spülmittel, das die Bildung von Blasen im Wasser erleichtert.

Diese Erkenntnisse sind kompatibel mit bisherigen Forschungsergebnissen. Allerdings haben Schmickler und Santos mit ihren Berechnungen erstmals ein Modell auf atomarer Ebene entwickelt. Dieses lässt sich auf andere Metalle übertragen und erklärt gleichzeitig, warum beispielsweise Kupfer keineswegs anfällig für Dendriten ist. „Bei Metallen wie Kupfer oder Silber ist die Oberfläche bei der Abscheidung positiv geladen. Bildet sich dort ein kleiner Vorsprung auf der Oberfläche, sammelt sich eine positive Ladung an. Diese stößt die positiv geladenen Metall-Ionen ab, das Cluster kann nicht weiter wachsen und Dendriten bilden“, erläutert Dr. Elizabeth Santos.

Welche praktische Relevanz haben diese Forschungsergebnisse für die Entwicklung hochleistungsfähiger Batterien? Mit ihrem neuen Modell können die Chemiker zeigen, warum einige relevante Materialien Dendriten bilden und andere nicht. Darüber hinaus liefern sie eine Erklärung für die Entstehung der Kristallstrukturen auf atomarer Ebene. „Im Prinzip sagt unser Modell voraus, wie sich die Bildung von Dendriten in aufladbaren Batterien vermeiden lässt. Hierfür wäre allerdings ein Lösungsmittel erforderlich, das widersprüchliche Anforderungen erfüllt. Daher haben unsere Ergebnisse zunächst vor allem theoretische Relevanz“, betonen die Autoren.

Fakten, Hintergründe, Dossiers
Mehr über Uni Ulm
  • News

    Molekulare „Matrjoschka“ löst chemisches Problem

    Einem deutsch-katalanischen Forschungsteam ist es erstmals gelungen, eine mehrschalige „Matrjoschka“-Architektur für die chemische Synthese zu verwenden. Die Chemiker aus Ulm und Girona haben dafür eine dreidimensionale Konstruktion aus ineinander geschachtelten Molekülen entwickelt. Diese ... mehr

    Filmpremiere mit Super-Mikroskop und Nanoröhrchen

    Atome sind die Bausteine unserer Welt: Dabei ist die Frage, wie sich diese winzigen Teilchen verbinden und voneinander lösen noch nicht vollständig beantwortet. Das Entstehen und Brechen dieser chemischen Verbindungen in Echtzeit festzuhalten, gehörte bislang zu den großen Herausforderungen ... mehr

    Magnetische Nanopartikel mit ionischen Flüssigkeiten für die Wasseraufbereitung

    In vielen Teilen der Welt ist der Zugang zu sauberem Trinkwasser alles andere als selbstverständlich. Filtration großer Mengen ist aufgrund der langsamen Durchflussgeschwindigkeiten jedoch kaum praktikabel. In der Zeitschrift Angewandte Chemie stellen Wissenschaftler einen neuartigen Ansatz ... mehr

  • q&more Artikel

    Synthetische Rezeptoren für Viren

    Durch die Fortschritte in der Polymerchemie und Nanotechnologie können Nanomaterialien heute mit einer Vielzahl an Eigenschaften und Funktionalitäten synthetisch hergestellt werden. Dies motiviert die Herstellung bioinspirierter Strukturen und Systeme, die beispielsweise in ihren Bindungse ... mehr

  • Autoren

    Prof. Dr. Boris Mizaikoff

    Boris Mizaikoff, Jahrgang 1965, promovierte 1996 in Analytischer Chemie an der Technischen Universität Wien und hat sich im Jahr 2000 ebendort für das Fach Analytische Chemie habilitiert. Im Anschluss war er 2000–2007 am Georgia Institute of Technology (Atlanta, USA) an der School of Chemis ... mehr