26.07.2021 - Universität Regensburg

Mit einem neuartigen Mikroskop dem Wunder des Sauerstoffs auf der Spur

Forscher verfolgen den ersten Schritt der Reaktion eines einzelnen Moleküls mit Sauerstoff in beispielloser Auflösung

Warum bleicht das Lieblings-T-Shirt in der Sonne mit der Zeit aus? Warum bekommt man Sonnenbrand und warum kündigt sich der Herbst mit braunen Blättern an? Diese Fragen haben alle eines gemein: das Wechselspiel zwischen Farbstoffpigmenten und dem Sauerstoff der Luft. Diese chemische Reaktion der „Oxidation“ in der Luft, die wir atmen, lernt jedes Kind in der Schule kennen. Was gibt es da noch zu erforschen? Zum Beispiel die Grundlagen für ein mikroskopisches Verständnis der Oxidationsreaktion, denen Forschende der Universität Regensburg auf den Grund gehen möchten.

Der Sauerstoff ist ein erstaunliches Molekül, es ist magnetisch. In flüssiger Form lässt er sich wie Eisenspäne mit einem Magneten hochheben. Diese Eigenschaft hat etwas mit den Elektronen im Sauerstoff zu tun. Alle Moleküle bestehen aus Atomkernen und Elektronen, die sich wiederum wie kleine Kompassnadeln verhalten. Üblicherweise stehen die Kompassnadeln der Elektronen paarweise entgegengesetzt, sodass sich deren magnetischen Kräfte aufheben. Aber im Sauerstoffmolekül, das aus zwei Sauerstoffatomen besteht, zeigen beide Kompassnadeln in die gleiche Richtung und der Sauerstoff wirkt magnetisch.

Farbstoffmoleküle hingegen sind nicht magnetisch, weil die Kompassnadeln der Elektronen in entgegengesetzte Richtungen zeigen. Fällt Licht auf ein solches Molekül, so wird es bei einer bestimmten Farbe absorbiert, wodurch der Farbstoff seine charakteristische Erscheinung bekommt. Die Energie des Lichts wird dabei auf ein Elektron des Farbstoffmoleküls übertragen. Dies hebt die Paarung von je zwei Elektronen auf, sodass die Kompassnadel des Elektrons spontan ihre Ausrichtung ändern kann. In seinen Ursprungszustand kann es nicht mehr zurück, weil die Nadeln jetzt in die gleiche Richtung zeigen. Bei diesem Effekt handelt es sich um einen durch Licht angeregten magnetischen Zustand, den sogenannten „Triplett“.

Das internationale Forschungsteam um Prof. Jascha Repp hat nun erstmals untersucht, wie diese „Triplett-Energie“ von einem einzelnen Farbstoffmolekül auf ein einziges Sauerstoffmolekül übertragen wird. Dieser Prozess ist im alltäglichen Leben von zentraler Bedeutung, da viele Oxidationsreaktionen über den angeregten Triplett-Zustand ablaufen. Solange das Molekül sich nämlich in diesem Zustand befindet, solange steckt die Energie des absorbierten Lichts im Molekül. Chemische Reaktionen werden dadurch begünstigt.

Für eine vollständige Abregung des Moleküls ist eine abermalige Umkehr der Ausrichtung der Kompassnadel notwendig, was unwahrscheinlich ist und lange dauert. Alternativ kann die Energie an ein weiteres magnetisches Molekül, den Sauerstoff übertragen werden. Durch diese Übertragung wird das Farbstoffmolekül abgeregt, aber der Sauerstoff wird reaktiv und kann beispielsweise den Farbstoff ausbleichen. Dies passiert mit dem T-Shirt in der Sonne, aber auch mit den Pigmenten der Haut beim Sonnenbrand.

Dem Team gelang es nun, den Energieübertrag von Farbstoff zu Sauerstoff direkt zu verfolgen, ohne den Farbstoff zu zerstören. Dazu wurden einzelne Moleküle bei sehr tiefen Temperaturen nahe dem absoluten Nullpunkt auf eine Oberfläche gebracht und mit einem sogenannten Rasterkraftmikroskop abgebildet, d. h. einer feinen Nadel mit einem einzelnen Atom an ihrer Spitze, welche über das Molekül gefahren wird. Durch eine geschickte Abfolge elektrischer Pulse wurde der Farbstoff im Triplett-Zustand präpariert. Die Energieübertragung zum Sauerstoff verfolgt man nun, indem man die Kraft zwischen Spitze und Molekül zeitlich misst. Dieser neue Forschungsansatz erlaubt es, diese Art der Messungen für ganz unterschiedliche geometrische Anordnungen der beiden involvierten Moleküle zu wiederholen und so erstmals den direkten Zusammenhang zwischen der Zeitdauer des Energietransfers und der dazugehörigen atomaren Anordnung herzustellen.

Dieser spektakuläre Durchbruch wurde im führenden Wissenschaftsmagazin Science veröffentlicht. Die Wissenschaftler hoffen, so endlich die Grundlagen für ein mikroskopisches Verständnis der Oxidationsreaktion zu erreichen. Neben dem lästigen Ausbleichen von T-Shirts spielt diese Wechselwirkung von Triplett-Anregungen in Molekülen nämlich auch in zukunftsrelevanten Technologien eine zentrale Rolle, so in organischen Leuchtdioden (OLEDs) und Solarzellen, in der photokatalytischen Energiekonversion und der Photosynthese sowie in der photodynamischen Krebstherapie.

Methodisch ist dies eine neue Form von zugleich zeitlich und räumlich auflösender Mikroskopie, passend zum Forschungsleitbild des neuen Regensburger Zentrums für Ultraschnelle Nanoskopie (RUN), dessen Forschungsbau gerade am Regensburger Campus entsteht.

Fakten, Hintergründe, Dossiers
Mehr über Uni Regensburg
  • News

    Die supraleitende Diode

    Wenn man ein Smartphone in der Hand hält oder die Hand an die Rückseite eines Desktop-PCs legt kann man es spüren: Elektronische Berechnungen erzeugen zwangsläufig Wärme. Ein Wissenschaftlerteam um Professor Dr. Christoph Strunk und Dr. Nicola Paradiso vom Institut für experimentelle und an ... mehr

    Kekulés geplatzter Traum: Leitern statt Schlangen

    Entlang einer molekularen Leiter aus Hunderten von Benzolringen bewegen Forschende der Universitäten Bonn und Regensburg Energiepakete hinauf und hinunter. Solche Polymere lassen sich potenziell für die Herstellung neuer Displays auf der Grundlage organischer Leuchtdioden oder für Solarzell ... mehr

    Erstmals chemische Bindungen zu künstlichen Atomen gemessen

    Atome bestehen aus einem sehr kleinen Kern, der von einer etwa 100.000 Mal größeren Elektronenhülle umgeben wird. Diese Elektronen haben quantisierte Energiezustände und bestimmen die mechanischen, elektronischen und optischen Eigenschaften der Materie. Künstliche Atome sind vom Menschen ge ... mehr

  • q&more Artikel

    Mizellen als Reaktionsumgebung

    Die Photoredoxkatalyse hat sich zu einem leistungsfähigen Instrument für die Synthese organischer Verbindungen mit den verschiedensten Strukturen entwickelt. Die hohe Stabilität der Kohlenstoff-Chlor-Bindungen hat jedoch lange Zeit den Einsatz kostengünstiger und leicht verfügbarer Chloralk ... mehr

    Interessante Gesundheitsförderer

    Unter den pflanzlichen Sekundärstoffen ist kaum eine Klasse von Verbindungen so pro­minent in unserem Leben vertreten wie die Flavonoide. Man findet sie in verschiedenen Oxidationsstufen und hauptsächlich als Glykoside (Abb. 1) in zahlreichen Nahrungsmitteln. Mit dem Konsum von Obst, Gemüse ... mehr

  • Autoren

    Prof. Dr. Burkhard König

    Burkhard König, Jahrgang 1963, studierte Chemie an der Universität Hamburg, wo er 1991 promovierte. Er absolvierte Postdoc-Aufenthalte bei Prof. M. A. Bennett, Research School of Chemistry, Australian National University, Canberra, Australien und bei Prof. B. M. Trost, Stanford University, ... mehr

    Dr. Maciej Giedyk

    Maciej Giedyk, Jahrgang 1988, beendete 2012 sein Studium der Chemie an der Warschauer Technischen Universität mit einem Master of Engineering ab. Im Jahr 2016 schloss er seine Doktorarbeit am Institut für Organische Chemie der Polnischen Akademie der Wissenschaften unter der Leitung von Pro ... mehr

    Prof. Dr. Jörg Heilmann

    Jörg Heilmann, geb. 1966, studierte Pharmazie an der Heinrich-Heine-Universität Düsseldorf und erhielt 1991 die Appro­bation. Von 1991 – 1992 war er als Apotheker in der Löwen-Apotheke Mülheim an der Ruhr tätig. An seine Promotion 1997 am Lehrstuhl Pharmazeutische Biologie an der Heinrich-H ... mehr