24.11.2021 - Ruhr-Universität Bochum RUB

Wie sich positiv und negativ geladene Ionen an Grenzflächen verhalten

Wenn geladene Teilchen in die Grenzschicht zwischen Flüssigkeit und Elektrode eintreten, müssen sie zunächst ihre Wasserhülle abstreifen

Wie sich positiv und negativ geladene Ionen in der Grenzschicht zwischen einer festen Oberfläche und einer wässrigen Lösung verhalten, haben Forschende des Exzellenzclusters RESOLV an der Ruhr-Universität Bochum, des Schwester-Forschungsverbundes CALSOLV in Berkeley und der Universität Evry in Paris untersucht. Am Synchroton SOLEIL konnten sie mit der Terahertz-Spektroskopie genau beobachten, wann und wie in einer Elektrolytlösung mit Natrium- und Chlorid-Ionen die Wasserhüllen um diese Ionen beim Anlegen von Spannungen abgelegt werden.

Elektrochemische Doppelschicht zwischen Elektrolyt und fester Grenzfläche

Als Elektrolyte werden chemische Verbindungen bezeichnet, in denen getrennte Ionen auftreten. Wenn zum Beispiel Natriumchlorid (NaCl) in Wasser gelöst wird, trennen sich die positiv geladenen Natrium- und die negativ geladenen Chlorid-Ionen und können sich frei in der Lösung bewegen. Durch die elektrische Anziehung zwischen den Ionen und den Wassermolekülen bildet sich eine Hülle aus Wassermolekülen um die einzelnen Ionen – eine sogenannte Hydrathülle, die in der Lösung stabil ist. In der unmittelbaren Umgebung der elektrischen Grenzschicht zwischen der Elektrode und Wasser bildet sich eine Schicht von Ladungsträgern. Dabei stehen sich eine positive und eine negative Ladungsschicht gegenüber, weswegen diese Schicht auch elektrochemische Doppelschicht genannt wird. Laut den Textbüchern der Chemie passiert beim Anlegen einer Spannung Folgendes: Durch die Anziehung zwischen der Elektrode und den Ionen wird die Wasserhülle abgestreift und es kommt zu einem Ladungstransfer, einem Strom.

Dieses einfache Bild erklärt, wie eine Batterie funktioniert. Ob es auch auf molekularer Ebene korrekt ist, untersuchten die Forschenden aus Bochum, Berkeley und Paris in der vorliegenden Arbeit. Außerdem überprüften sie, ob der Prozess identisch ist, wenn man wechselweise negative oder positive Spannungen anlegt.

Beobachtung im laufenden Prozess schwierig

Die chemischen Vorgänge auf molekularem Niveau zu beobachten, während eine Spannung anliegt, stellt eine besondere experimentelle Herausforderung dar. Genau das gelang den Wissenschaftlerinnen und Wissenschaftlern in der aktuellen Studie mit der Terahertz-Spektroskopie, die sie mit Simulationen kombinierten. Die Forschenden untersuchten dazu am Synchroton SOLEIL in Paris die elektrochemische Doppelschicht, die sich in einer NaCl-Lösung in unmittelbarer Nähe an einer Goldoberfläche bildet.

Die Terahertz-Spektroskopie ermöglicht es, das Abstreifen der Hydrathülle live zu verfolgen. Außerdem zeigten die Forschenden erstmals, wie sich die Wassernetzwerke an der geladenen Goldoberfläche verändern. Das ist wesentlich, um zu verstehen, wie sich die Gesamtenergie im Prozess verändert. „Verblüffend war für uns dabei, dass der Prozess unterschiedlich für positive und negative Ladungen abläuft“, resümiert Prof. Dr. Martina Havenith, Sprecherin von RESOLV.

Asymmetrische Ablösung der Hydrathülle

Die Forschenden fanden heraus, dass sich die Hydrathüllen von Natrium- und Chlorid-Ionen in der elektrochemischen Doppelschicht unterschiedlich verhielten. Die Hydrathülle der positiv geladenen Ionen wurde schon bei kleinen angelegten Spannungen abgelöst und das Natriumion zur Elektrode gezogen. Für die negativ geladenen Chlorid-Ionen geschah das erst ab einer höheren angelegten Spannung. Diese Unterschiede konnte das Team auf das Verhalten der Wassernetzwerke an der Grenzfläche zurückführen. Die Ergebnisse bestätigten die Wissenschaftlerinnen und Wissenschaftler mithilfe komplexer Computersimulationen.

„Die Methode und die Ergebnisse können nun genutzt werden, um die entscheidende Rolle von Wasser bei anderen Grenzflächenprozessen, beispielsweise an Halbleiter/Elektrolyt-Grenzflächen zu untersuchen“, so Martina Havenith. Die Ergebnisse sind wichtig für das Verständnis und die Optimierung elektrochemischer Prozesse, etwa für technologische Anwendungen wie die Solarzellen- oder Brennstoffzellentechnologien.

Fakten, Hintergründe, Dossiers
  • Ionen
  • Grenzflächen
  • Terahertz-Spektroskopie
Mehr über Ruhr-Universität Bochum
  • News

    Wie eingesperrte Protonen wandern

    Protonen können in wässrigen Lösungen üblicherweise sehr schnell wandern – schneller als andere Ionen. Das gilt allerdings nur, wenn sie mehr als zwei Nanometer Platz haben, wie eine Studie der Ruhr-Universität Bochum (RUB) und der University of California in Berkeley zeigt. Auf engem Raum ... mehr

    Schritt für Schritt zum Endprodukt per Enzymkatalyse

    Die Herstellung des Zuckers Trehalose, der als functional food, Additiv in Pharmaprodukten oder in Kosmetika eingesetzt wird, ist für Enzyme Teamarbeit: Eines sorgt für den Bau eines energiereichen Zwischenprodukts (UDP-Glukose), aus dem das zweite dann Trehalose macht. Obwohl Nummer eins b ... mehr

    Wie Cola nach einem Jahr noch prickelt

    Sorgt man gezielt dafür, dass sich in Plasmen Polymere bilden und auf den umgebenden Oberflächen ablagern, kann man diese gezielt beschichten. Dank dieser sogenannten Plasma Enhanced Chemical Vapour Deposition, kurz PECVD, kann man zum Beispiel dünnste, gasdichte Beschichtungen auf die Inne ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr