Wie sich positiv und negativ geladene Ionen an Grenzflächen verhalten

Wenn geladene Teilchen in die Grenzschicht zwischen Flüssigkeit und Elektrode eintreten, müssen sie zunächst ihre Wasserhülle abstreifen

24.11.2021 - Deutschland

Wie sich positiv und negativ geladene Ionen in der Grenzschicht zwischen einer festen Oberfläche und einer wässrigen Lösung verhalten, haben Forschende des Exzellenzclusters RESOLV an der Ruhr-Universität Bochum, des Schwester-Forschungsverbundes CALSOLV in Berkeley und der Universität Evry in Paris untersucht. Am Synchroton SOLEIL konnten sie mit der Terahertz-Spektroskopie genau beobachten, wann und wie in einer Elektrolytlösung mit Natrium- und Chlorid-Ionen die Wasserhüllen um diese Ionen beim Anlegen von Spannungen abgelegt werden.

© RUB, Kramer

Was am Übergang von einer wässrigen Lösung zu einer geladenen Oberfläche passiert, haben Forschende der RUB mit ihren Kooperationspartnern untersucht.

Elektrochemische Doppelschicht zwischen Elektrolyt und fester Grenzfläche

Als Elektrolyte werden chemische Verbindungen bezeichnet, in denen getrennte Ionen auftreten. Wenn zum Beispiel Natriumchlorid (NaCl) in Wasser gelöst wird, trennen sich die positiv geladenen Natrium- und die negativ geladenen Chlorid-Ionen und können sich frei in der Lösung bewegen. Durch die elektrische Anziehung zwischen den Ionen und den Wassermolekülen bildet sich eine Hülle aus Wassermolekülen um die einzelnen Ionen – eine sogenannte Hydrathülle, die in der Lösung stabil ist. In der unmittelbaren Umgebung der elektrischen Grenzschicht zwischen der Elektrode und Wasser bildet sich eine Schicht von Ladungsträgern. Dabei stehen sich eine positive und eine negative Ladungsschicht gegenüber, weswegen diese Schicht auch elektrochemische Doppelschicht genannt wird. Laut den Textbüchern der Chemie passiert beim Anlegen einer Spannung Folgendes: Durch die Anziehung zwischen der Elektrode und den Ionen wird die Wasserhülle abgestreift und es kommt zu einem Ladungstransfer, einem Strom.

Dieses einfache Bild erklärt, wie eine Batterie funktioniert. Ob es auch auf molekularer Ebene korrekt ist, untersuchten die Forschenden aus Bochum, Berkeley und Paris in der vorliegenden Arbeit. Außerdem überprüften sie, ob der Prozess identisch ist, wenn man wechselweise negative oder positive Spannungen anlegt.

Beobachtung im laufenden Prozess schwierig

Die chemischen Vorgänge auf molekularem Niveau zu beobachten, während eine Spannung anliegt, stellt eine besondere experimentelle Herausforderung dar. Genau das gelang den Wissenschaftlerinnen und Wissenschaftlern in der aktuellen Studie mit der Terahertz-Spektroskopie, die sie mit Simulationen kombinierten. Die Forschenden untersuchten dazu am Synchroton SOLEIL in Paris die elektrochemische Doppelschicht, die sich in einer NaCl-Lösung in unmittelbarer Nähe an einer Goldoberfläche bildet.

Die Terahertz-Spektroskopie ermöglicht es, das Abstreifen der Hydrathülle live zu verfolgen. Außerdem zeigten die Forschenden erstmals, wie sich die Wassernetzwerke an der geladenen Goldoberfläche verändern. Das ist wesentlich, um zu verstehen, wie sich die Gesamtenergie im Prozess verändert. „Verblüffend war für uns dabei, dass der Prozess unterschiedlich für positive und negative Ladungen abläuft“, resümiert Prof. Dr. Martina Havenith, Sprecherin von RESOLV.

Asymmetrische Ablösung der Hydrathülle

Die Forschenden fanden heraus, dass sich die Hydrathüllen von Natrium- und Chlorid-Ionen in der elektrochemischen Doppelschicht unterschiedlich verhielten. Die Hydrathülle der positiv geladenen Ionen wurde schon bei kleinen angelegten Spannungen abgelöst und das Natriumion zur Elektrode gezogen. Für die negativ geladenen Chlorid-Ionen geschah das erst ab einer höheren angelegten Spannung. Diese Unterschiede konnte das Team auf das Verhalten der Wassernetzwerke an der Grenzfläche zurückführen. Die Ergebnisse bestätigten die Wissenschaftlerinnen und Wissenschaftler mithilfe komplexer Computersimulationen.

„Die Methode und die Ergebnisse können nun genutzt werden, um die entscheidende Rolle von Wasser bei anderen Grenzflächenprozessen, beispielsweise an Halbleiter/Elektrolyt-Grenzflächen zu untersuchen“, so Martina Havenith. Die Ergebnisse sind wichtig für das Verständnis und die Optimierung elektrochemischer Prozesse, etwa für technologische Anwendungen wie die Solarzellen- oder Brennstoffzellentechnologien.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

20+ Produkte
150+ Unternehmen
25+ White Paper
10+ Broschüren
Themenwelt anzeigen

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

20+ Produkte
150+ Unternehmen
25+ White Paper
10+ Broschüren

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren