04.01.2022 - Universität Innsbruck

Sp­lish Splash im He­li­um­bad

Überraschendes Phänomen

Bei der Arbeit mit Helium-Nanotröpfchen sind Wissenschaftler der Universität Innsbruck um Fabio Zappa und Paul Scheier auf ein überraschendes Phänomen gestoßen: Treffen die ultrakalten Tröpfchen auf eine harte Oberfläche, verhalten sie sich wie Wassertropfen. Ionen, mit denen sie zuvor dotiert wurden, bleiben so beim Aufprall geschützt und werden nicht neutralisiert.

Am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck nutzt die Arbeitsgruppe um Paul Scheier seit rund 15 Jahren Helium-Nanotröpfchen für die Untersuchung von Ionen mit massenspektrometrischen Methoden. Mit Hilfe einer Überschalldüse lassen sich winzige, supraflüssige Helium-Nanotröpfchen mit Temperaturen von weniger als einem Grad Kelvin erzeugen. Atome und Moleküle können sehr effektiv von diesen eingefangen werden. Im Fall von ionisierten Tröpfchen lagern sich die zu untersuchenden Teilchen an den Ladungen an, die dann im Massenspektrometer vermessen werden. Bei ihren Experimenten sind die Wissenschaftler nun über ein interessantes Phänomen gestolpert, das ihre Arbeit fundamental verändert hat. „Für uns war das ein Gamechanger“, sagt Fabio Zappa aus dem Nano-Bio-Physik-Team. „Alles bei uns wird jetzt mit dieser neu entdeckten Methode gemacht.“ Die Forscher haben die Ergebnisse ihrer Studien nun in der Fachzeitschrift Physical Review Letters veröffentlicht.

Überraschendes Phänomen

Wenn man geladene Teilchen auf eine Metallplatte schießt, werden diese normalerweise durch die vielen freien Elektronen an der Metalloberfläche neutralisiert. Im Massenspektrometer können sie dann nicht mehr gemessen werden. Wenn die Ionen aber in einem Helium-Nanotröpfchen eingepackt sind, bleiben sie beim Aufprall geschützt und fliegen oftmals mit einigen schwach gebundenen Heliumatomen in alle Richtungen davon. „Die Ionen werden durch das Helium offenbar geschützt“, sagt Zappa. Den genauen Grund dafür kennt er noch nicht. „Es deutet aber einiges darauf hin, dass das Helium seine supraflüssige Eigenschaft vor dem Aufprall verliert und sich dann wie eine Flüssigkeit verhält, von der Oberfläche wegspritzt und erst danach teilweise verdampft.“ Ein anderer möglicher Grund könnte sein, dass die ersten Tröpfchen an der Oberfläche verdampfen und eine Gasschicht bilden, die die nachfolgenden Tröpfchen abbremst und auf diese Weise vor dem Verdampfen schützt. Erst weitere Untersuchungen werden zeigen, ob eine dieser Deutungen richtig ist oder andere Gründen vorliegen. Dass diese Methode auch mit negativen Ionen funktioniert, die normalerweise sehr fragil sind, deutet für die Wissenschaftler auf einen starken Effekt des bisher unbekannten Phänomens hin.

Nanotechnologie profitiert

Das Team um Paul Scheier hat mit dieser Entdeckung nicht nur die eigene Messmethode verbessert, sondern auch wichtige Einsichten für andere Forschungsgruppen gewonnen, die sich zum Beispiel mit der Ablagerung von Nanoteilchen auf Oberflächen beschäftigen. „Ein schönes Beispiel dafür sind Metallnanoteilchen“, erzählt Scheier. „In vielen modernen Technologien finden sich Nanoteilchen aus Metall, die sehr spezielle Eigenschaften haben.“ Dass die Erzeugung solcher Nanofilme oft sehr ineffizient sein kann, könnte auch mit dem nun in Innsbruck entdeckten Phänomen zusammenhängen.

Fakten, Hintergründe, Dossiers
Mehr über Universität Innsbruck
  • News

    Quantencomputer überprüfen sich gegenseitig

    Woher wissen wir, ob ein Quantencomputer die richtige Antwort auf eine Frage liefert, die mit keinem anderen Computer beantwortet werden kann? Dieser Herausforderung widmete sich nun ein Team von Forschern der Universitäten Wien, Innsbruck, Oxford und Singapur, und zeigte wie sich Quantenco ... mehr

    Suprasolid in eine neue Dimension

    Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein. Forscher um Francesca Ferlaino haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt. Sie berichten darüber in der Fachzeitschrift Nature. Das Experiment b ... mehr

    Chemische Beziehungsspiele entwirrt

    Den Wettstreit zweier wichtiger Reaktionsmechanismen der organischen Chemie haben Physiker um Roland Wester von der Universität Innsbruck im Labor genau beobachtet. Die detaillierte Untersuchung der Reaktionsdynamik eines aus neun Atomen bestehenden Reaktionskomplexes ist bisher einzigartig ... mehr

  • Videos

    Physik: Quantensysteme kontrollieren

    Wie wird die Erde der Zukunft aussehen? Technologie wird zum Einsatz kommen, die uns Menschen ungeahnte Möglichkeiten geben wird. Einen wesentlichen Beitrag dazu liefert die Quantenphysik. In Innsbruck arbeiten Wissenschaftler heute schon an den Grundlagen der Welt von Übermorgen, am Instit ... mehr

    Chemie: Pollen mit flexibler Wirkung

    Wenn im Frühling die Bäume blühen, dann leiden Allergiker an Heuschnupfen. Jeder fünfte Mitteleuropäer ist beispielsweise auf Birkenpollen allergisch. Pollen sind mikroskopisch kleine, kugelige Gebilde. Sie sind unter anderem aus verschiedenen Eiweißbausteinen aufgebaut, und einige dieser P ... mehr

  • q&more Artikel

    Wissen statt Nichtwissen

    Biologie ist naturgemäß komplex und selbst die Ergebnisse einfachster biochemischer Experimente sind mit nicht zu vernachlässigendem experimentellen Rauschen behaftet. Biochemische Messungen sind jedoch das Rückgrat moderner Pharmaforschung. Wird die experimentelle Unsicherheit bei der Plan ... mehr

  • Autoren

    Prof. Dr. Christian Kramer

    Jg. 1980, studierte Molecular Sciences in Erlangen und Zürich. Er promovierte von 2007–2009 an der Universität Erlangen in enger Zusammenarbeit mit Boehringer-Ingelheim/Biberach über neue QSAR- und QSPR-Methoden zu statistischen Vorhersagen von physikochemischen und biochemischen Eigenschaf ... mehr