06.07.2022 - Paul Scherrer Institut (PSI)

Spiegelbildliche Moleküle leichter unterscheiden

Mit schraubenförmigem Röntgenlicht lassen sich spiegelbildliche Substanzen – sogenannte Enantiomere – besser voneinander unterscheiden

Mithilfe einer neuen Methode lassen sich spiegelbildliche Substanzen besser voneinander unterscheiden. Das ist unter anderem bei der Herstellung von Arzneimitteln wichtig, weil die beiden Varianten völlig unterschiedliche Wirkungen im menschlichen Körper entfalten können. Das neue Verfahren beschreiben Forschende des Paul Scherrer Instituts PSI, der ETH Lausanne (EPFL) und der Universität Genf nun im Fachblatt Nature Photonics.

Einige Moleküle existieren in zwei Formen, die zwar strukturell identisch sind, aber in ihrem Aufbau spiegelbildlich zueinander – genau wie unsere rechte und linke Hand. Es handelt sich dann um chirale Moleküle. Ihre beiden spiegelbildlichen Formen nennt man Enantiomere. Bei biologischen Molekülen ist eine Chiralität besonders relevant, denn sie können unterschiedliche Wirkung im Körper entfalten. In der Biochemie, Toxikologie und bei der Entwicklung von Arzneimitteln ist es daher essenziell, Enantiomere voneinander zu trennen, damit beispielsweise nur die erwünschte Variante in ein Medikament gelangt. Nun hat ein Zusammenschluss von Forschenden vom PSI, der EPFL und der Universität Genf eine neue Methode entwickelt, mit der sich Enantiomere besser voneinander unterscheiden und somit trennen lassen: den helikalen Dichroismus im Röntgenbereich.

Die bisher etablierte Methode, mit der Enantiomere unterschieden werden, ist der sogenannte zirkulare Dichroismus, abgekürzt CD. Hierbei wird Licht mit einer bestimmten Eigenschaft – nämlich zirkular polarisiertes Licht – durch die Probe geschickt. Dieses Licht wird von den Enantiomeren unterschiedlich stark absorbiert. CD ist in der analytischen Chemie, in der biochemischen Forschung sowie in der Pharma- und Lebensmittelindustrie weit verbreitet. Allerdings sind bei CD die Signale von Natur aus sehr schwach: Die Lichtabsorption der beiden Enantiomere unterscheidet sich nur um knapp 0,1 Prozent. Es existieren verschiedene Strategien zur Verstärkung der Signale, die jedoch nur geeignet sind, wenn die Probe in der Gasphase vorliegt. Ein Grossteil der Chemie und Biochemie jedoch wird in flüssigen Lösungen betrieben, vor allem in Wasser.

Die neue Methode nutzt dagegen den sogenannten helikalen Dichroismus, kurz HD. Der Effekt, der diesem Phänomen zugrunde liegt, ist statt in der Polarisierung des Lichts in dessen Form zu finden: Die Wellenfront ist hierbei schraubenförmig gekrümmt.

An der Synchrotron Lichtquelle Schweiz SLS am PSI konnten die Forschenden erstmals erfolgreich zeigen, dass sich auch mit schraubenförmigem Röntgenlicht Enantiomere unterscheiden lassen. An der cSAXS-Strahllinie der SLS demonstrierten sie dies an einer pulverförmigen Probe des chiralen Metallkomplexes Eisen-tris-Bipyridin, die die Forschenden der Universität Genf zur Verfügung gestellt hatten. Das Signal, das sie erhielten, war um mehrere Grössenordnungen stärker als dasjenige, das sich mit CD erreichen lässt. HD lässt sich auch in flüssigen Lösungen nutzen, und erfüllt damit eine ideale Voraussetzung für Anwendungen in der chemischen Analytik.

Entscheidend für das Experiment war, Röntgenlicht mit den genau richtigen Eigenschaften zu erschaffen. Dies gelang den Forschenden mit sogenannten Spiralzonenplatten, einer besonderen Art von Beugungslinsen, durch die sie das Licht schickten, bevor es auf die Probe traf.

«Mit den Spiralzonenplatten konnten wir auf sehr elegante Art unserem Röntgenlicht die gewünschte Form und somit einen Bahndrehimpuls geben. Die Strahlen, die wir so erschaffen, werden auch als optische Wirbel bezeichnet», sagt PSI-Forscher Benedikt Rösner, der die Zonenplatten für dieses Experiment entworfen und hergestellt hat.

Jérémy Rouxel, Forscher an der EPFL und Erstautor der neuen Studie, ergänzt: «Der helikale Dichroismus liefert eine völlig neue Art der Licht-Materie-Wechselwirkung. Wir können ihn für die Unterscheidung von Enantiomeren perfekt ausnutzen.»

Fakten, Hintergründe, Dossiers
  • Moleküle
  • chirale Substanzen
  • Chiralität
Mehr über Paul Scherrer Institut
  • News

    Lichtverstärkung beschleunigt chemische Reaktionen in Aerosolen

    Aerosole in der Atmosphäre reagieren unter Sonnenlichteinstrahlung. Im Innern der Aerosol-​Tröpfchen und -​Partikel wird das Licht verstärkt, was die Reaktionen beschleunigt, wie ETH-​Forschende nun zeigen und beziffern konnten. Die Wissenschaftler:innen raten, den Effekt in künftigen Klima ... mehr

    Blick in die magnetische Zukunft

    Der Einblick in die Vorgänge innerhalb von solch künstlichem Spin-​Eis könnte eine wichtige Rolle spielen bei der Entwicklung neuartiger Hochleistungsrechner. Gefriert Wasser zu Eis, ordnen sich die Wassermoleküle mit ihren Wasserstoff-​ und Sauerstoffatomen in einer komplexen Struktur an. ... mehr

    Neuartige Röntgenlinse erleichtert Blick in die Nanowelt

    Forschende am PSI haben erstmals eine sogenannte achromatische Linse für Röntgenlicht entwickelt. Damit lassen sich die Röntgenstrahlen auch dann gut auf einen einzigen Punkt fokussieren, wenn sie eine gewisse Bandbreite an Wellenlängen haben. Die neue Linse wird die Erforschung von Nanostr ... mehr

  • Forschungsinstitute

    Paul Scherrer Institut (PSI)

    Das Paul Scherrer Institut (PSI) ist ein multidisziplinäres Forschungszentrum für Naturwissenschaften und Technologie, das national und international eng mit Hochschulen, andern Forschungsinstituten, den Fachhochschulen und der Industrie zusammenarbeitet. Mit seinen rund 1300 Mitarbeiterin ... mehr

Mehr über Université de Genève
  • News

    Revolutionäre Bilder von der Geburt der Kristalle

    An der Schnittstelle zwischen Chemie und Physik ist der Prozess der Kristallisation in der Natur und der Industrie allgegenwärtig. Er ist die Grundlage für die Bildung von Schneeflocken, aber auch für bestimmte Wirkstoffe, die in der Pharmakologie verwendet werden. Damit das Phänomen bei ei ... mehr

    Ein neuer Elektrolyt für umweltfreundlichere und sicherere Batterien

    Die Zukunft der Batterietechnologie liegt im Natrium. Natrium ist nachhaltiger als Lithium - das derzeit die meisten unserer Geräte und Fahrzeuge antreibt - und kommt auf der Erdoberfläche reichlich vor. Das einzige Problem besteht darin, dass sich seine Ionen im flüssigen Elektrolyt herköm ... mehr

    Moleküle so einfach binden wie Schnürsenkel

    Knoten sind überall um uns herum: in Computerkabeln, Kopfhörern und Drähten. Aber obwohl sie lästig sein können, sind sie auch sehr nützlich, wenn es darum geht, die Schnürsenkel zu binden oder wenn man segeln geht. In der Mathematik gibt es nicht weniger als sechs Milliarden verschiedene p ... mehr

  • q&more Artikel

    Kombinatorische Explosion

    Eines der Hauptziele in der Analytik ist die Entwicklung und Validierung von Methoden zur Identifizierung und Quantifizierung von Molekülen in komplexen Proben, um Forschungen in der Pharmazie, den Umweltwissenschaften, der Ernährungswissenschaft, Biologie und Medizin zu unterstützen. mehr

    Nachweis und Manipulation von Ionen

    Die pH-Elektrode ist mittlerweile einzigartig für die Überwachung chemischer Prozesse und überall verbreitet. Fortschritt in der Materialchemie und der fundamentalen Methodik öffnet die Tür für neue aufregende Ansätze. mehr

  • Autoren

    Prof. Dr. Gérard Hopfgartner

    Gérard Hopfgartner, Jg. 1960, studierte Chemie an der Universität Genf und promovierte 1991 im Bereich organischer Geochemie und Massenspektrometrie. Nach der Promotion setzte er seine Ausbildung an der Cornell Universität im Bereich der LC-MS/MS-Atmosphärendruck-Ionisation fort. 1992 trat ... mehr

    Prof. Dr. Eric Bakker

    Jg. 1965, ist Professor der Chemie an der Universität von Genf. Er absolvierte seine Ausbildung an der ETH in Zürich (Schweiz). Nach seiner Promotion führte er seine Studien an der Universität von Michigan in Ann Arbor, USA fort. Seine unabhängige Karriere begann an der Auburn Universität i ... mehr

    Xiaojiang Xie

    Jg. 1986, arbeitet zurzeit an seiner Doktorarbeit in der Forschergruppe von Prof. Eric Bakker an der Universität Genf. Zwischen seinem Bachelorabschluss an der Nanjing-Universität in China und dem Beginn seiner Studien in Genf arbeitete er für ein halbes Jahr bei WuXi AppTech (Shanghai) und ... mehr