21.07.2022 - Deutsches Elektronen-Synchrotron DESY

Nanopartikel retten historische Gebäude

Forschungsteam untersucht bei DESY Nano-Kristalle für mehr Festigkeit von Sandstein

Viele historische Gebäude wurden aus Sandstein gebaut, etwa der Wiener Stephansdom. Sandstein lässt sich leicht bearbeiten, hält aber der Verwitterung schlecht stand. Er besteht aus Sandkörnern, die relativ schwach aneinander gebunden sind, daher bröckeln im Lauf der Jahre immer wieder Teile des Gesteins ab, oft sind aufwändige Restaurierungen notwendig.

Man kann die Widerstandskraft des Gesteins aber erhöhen, indem man sie mit speziellen Nanopartikeln aus Silikat behandelt. Die Methode wird bereits eingesetzt, was dabei allerdings genau passiert und welche Nanopartikel dafür am besten geeignet sind, war bisher unklar. Ein Forschungsteam derTechnischen Universität (TU) Wienund der Universität Oslo konnte nun durch aufwändige Experimente an DESYs Röntgenlichtquelle PETRA III und mit mikroskopischen Untersuchungen in Wien genau klären, wie dieser künstliche Härtungsprozess abläuft und dadurch bestimmen, welche Nanopartikel dafür am besten geeignet sind. Die Ergebnisse sind im Fachblatt „Langmuir“ veröffentlicht. 

„Man verwendet eine Suspension, also eine Flüssigkeit, in der die Nanopartikel zunächst frei herumschwimmen“, erklärt Forschungsleiter Markus Valtiner von der TU Wien. „Wenn diese Suspension in das Gestein gelangt, dann verdunstet der wässrige Anteil, die Nanopartikel bilden stabile Brücken zwischen den Sandkörnern und verleihen dem Gestein zusätzliche Stabilität.“

Diese Methode wird in der Restaurierungstechnik bereits angewandt, aber man wusste bisher nicht genau, welche physikalischen Prozesse dabei ablaufen. Wenn das Wasser verdunstet, dann kommt es zu einer ganz speziellen Art der Kristallisation: Normalerweise ist ein Kristall eine regelmäßige Anordnung einzelner Atome. Doch nicht nur Atome, sondern auch ganze Nanopartikel können sich in einer regelmäßigen Struktur anordnen – man spricht dann von einem „kolloidalen Kristall“.

Die Silikat-Nanopartikel finden sich beim Trocknen im Gestein zu solchen kolloidalen Kristallen zusammen und erzeugen dadurch gemeinsam neue Verbindungen zwischen den einzelnen Sandkörnern. Dadurch wird die Festigkeit des Sandsteins erhöht. Um diesen Kristallisationsprozess genau zu beobachten, nutze das Forschungsteam der TU Wien die brillante Röntgenstrahlung von PETRA III. An der Messstation P21.2 analysierten sie damit die Kristallisation während des Trockungsprozesses.

„Das war sehr wichtig, um genau zu verstehen, wovon die Stärke der entstehenden Bindungen abhängt“, sagt Hauptautorin Joanna Dziadkowiec von der Universität Oslo und der TU Wien. „Wir haben unterschiedlich große Nanopartikel in unterschiedlicher Konzentration verwendet und den Kristallisationsprozess mit Röntenanalysen untersucht.“ Dabei konnte gezeigt werden, dass die Größe der Partikel für die optimale Festigkeit entscheidend ist.

Dazu wurden an der TU Wien außerdem die Haftkraft gemessen, die durch die kolloidalen Kristalle entsteht. Dafür wurde ein eigenes Interferenzmikroskop verwendet, das auf die Messung winziger Kräfte zwischen zwei Oberflächen spezialisiert ist. „Wir konnten zeigen: Je kleiner die Nanopartikel, umso mehr verstärken sie den Zusammenhalt zwischen den Sandkörnern“, sagt Joanna Dziadkowiec. „Wenn man kleinere Partikel verwendet, entstehen mehr Bindungsstellen im kolloidalen Kristall zwischen zwei Sandkörner, und mit der Zahl der beteiligten Partikel steigt damit auch die Kraft, mit der sie die Sandkörner zusammenhalten.“

Wichtig ist auch, wie viele Partikel in der Emulsion vorhanden sind. „Je nach Partikelkonzentration verläuft der Kristallisationsprozess leicht unterschiedlich, und das hat einen Einfluss darauf, wie sich die kolloidalen Kristalle im Detail ausbilden“, sagt Markus Valtiner. Die neuen Erkenntnisse sollen nun dazu dienen, Restaurierungsarbeiten dauerhafter und zielgenauer zu machen.

Fakten, Hintergründe, Dossiers
Mehr über Deutsches Elektronen-Synchrotron DESY
  • News

    Express-Röntgenbilder von Mikrochips

    Eine neue Methode beschleunigt die Aufnahme von Röntgenbildern ausgedehnter Untersuchungsobjekte wie Mikrochips. Die innovative Technik ermöglicht es, relativ große Objekte in angemessener Zeit bis in den Nanometerbereich zu untersuchen. Das ist nicht nur für die Wissenschaft, sondern auch ... mehr

    Start-up Labs Bahrenfeld wachsen

    Der Hamburger Senat fördert die schnelle Erweiterung der Start-up Labs Bahrenfeld um 360 Quadratmeter mit 700.000 Euro. Insgesamt sollen auf dem DESY-Campus in unmittelbarer Nachbarschaft zu dem bestehenden Gebäude der Start-up Labs Bahrenfeld mindestens 25 Laborarbeitsplätze und 20 Büroarb ... mehr

    Quantentanz von Elektronen in Molekülen

    Einem internationalen Forschungsteam um DESY-Wissenschaftler Tim Laarmann ist es erstmals gelungen, die quantenmechanische Wanderung von Elektronen durch ein Molekül mit Echtzeitmessungen zu verfolgen. Die Beobachtungen mit DESYs brillantem Freie-Elektronen-Laser FLASH an einzelnen Moleküle ... mehr

  • Videos

    DESYs Röntgenlaser FLASH - High-Speed-Kamera für den Nanokosmos

    Wie arbeiten die Moleküle des Lebens? Wie funktionieren die Werkstoffe der Zukunft? Wie können wir effizienter Energie gewinnen und Ressourcen schonen? Fragen and FLASH, die High-Speed-Kamera für den Nanokosmos. mehr

    Teilchenzoo: Und nun?

    Mit dem extrem erfolgreichen Standardmodell der Teilchenphysik verstehen wir bislang nur rund 5% des Universums. Wie geht es weiter - Stringtheorie, Supersymmetrie, DESY-Physiker Georg Weiglein und Gudrid Moortgat-Pick diskutieren die großen offenen Fragen der Teilchenphysik. mehr

    Teilchenzoo: Photonen, Gluonen und andere Kräfteteilchen

    "Die vier Kräfte" - das ist kein Gericht aus dem Chinarestaurant, sondern das sind die vier Grundkräfte der Natur: die starke, die schwache, die elektromagnetische und die Schwerkraft. DESY-Doktorand Marc Wenskat erklärt ihre Wechselwirkungsteilchen und zeigt dabei, dass ein kleiner Magnet ... mehr