12.08.2022 - Albert-Ludwigs-Universität Freiburg

Neues Reagenz für die Deelektronierung entwickelt

Das Reagenz ermöglicht den Zugang zur Klasse der geclusterten Übergangsmetall-Carbonylkationen

Freiburger Forschenden ist es gelungen, mehrkernige Übergangsmetallcarbonyle durch typische anorganische Oxidationsmittel in ihre homoleptischen Komplexkationen zu überführen. In ihrer Arbeit zeigt das Forschungsteam aus Malte Sellin, Christian Friedmann und Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie und Maximilian Mayländer und Sabine Richert vom Institut für Physikalische Chemie der Universität Freiburg, dass das Anthracen-Derivat mit einem Halbstufenpotential von 1,42 Volt vs. Fc0/+ durch ein Nitrosonium-Salz zum radikalischen Deelektronier-Salz umgesetzt werden kann. „Damit haben wir die Grenze der Grundlagenforschung in der Koordinationschemie als auch in der Metallorganischen Chemie ein Stück weiter hinausgeschoben“, so Krossing. Die Forschungsgruppe veröffentlichte ihre Ergebnisse in der Fachzeitschrift Chemical Science.

Deelektronierer aus handelsüblicher Chemikalie

Um Zugang zu der bisher unbekannten Klasse der geclusterten Übergangsmetall-Carbonylkationen zu erhalten, haben die Forschenden der Universität Freiburg nach einer Möglichkeit gesucht, Substrate zu ionisieren, ohne dabei unerwünschte Nebenreaktionen auszulösen. Bei der Ionisation verliert ein neutrales Molekül ein oder mehrere Elektronen. In Folge entsteht ein positiv geladenes Molekül, auch Kation genannt. Ein sogenannter unschuldiger Deelektonierer ist ein Ionisierungsmittel, das ausschließlich Elektronen aus dem Substrat aufnimmt und sonst keine weiteren unerwünschten Reaktivitäten zeigt. Da der einzige bisher bekannte unschuldige Deelektronierer, ein perfluoriertes Ammoniumyl­kation, eine mühsame und zeitaufwändige Synthese erfordert, haben die Freiburger Wissenschaftler*innen eine Alternative entwickelt, die direkt aus einer handelsüblichen Chemikalie hergestellt wird: Das Anthracen-Derivat mit einem Halbstufen Potential von 1,42 Volt vs. Fc0/+ kann durch ein Nitrosonium-Salz zum radikalischen Deelektronier-Salz umgesetzt werden. „Das Deelektronier-Salz ermöglicht uns, unter Erhalt der Struktur Elektronen aus dem System zu entfernen. Es ist also besonders mild und erzeugt Systeme, die wir bisher noch nicht darstellen konnten. Diese könnten langfristig gesehen helfen, neuartige und bessere Katalysen zu ermöglichen“, erklärt Krossing.

Ohne das perhalogenierte Anthracen-Derivat geht es nicht

Zunächst versuchte die Forschungsgruppe die gewünschten Übergangsmetall-Carbonylkationen durch die Umsetzung von Trimetall-Dodecacarbonyle mit einem Silbersalz als Oxidationsmittel zu erzeugen. Auch die direkte Umsetzung der Trimetall-Dodecacarbonyle mit Nitrosylkationen führte nicht zum erhofften Ergebnis. „Wenn das Nitrosylkation allerdings im Voraus mit einem perhalogenierten Anthracen-Derivat umgesetzt wird, dann deelektroniert das resultierende Acen-Radikalkation die Trimetall-Dodecacarbonyleunter Kohlenstoffmonoxid-Atmosphäre und führt zu den gewünschten Salzen“, erklärt Sellin. „Bislang ist es niemandem gelungen, mehrkernige Übergangsmetallcarbonyle durch typische anorganische Oxidationsmittel in ihre homoleptischen Komplexkationen zu überführen. Wir haben nun gezeigt, dass es möglich ist“, so Krossing. Sellin ergänzt: „Erstaunlich ist, dass die strukturelle Charakterisierung sowie Schwingungs- und Kernspinresonanz­spektroskopie an unserem neuen Cluster auf drei stark elektronisch verschiedene Carbonyl-Liganden hindeuten. Es hat uns sehr überrascht, ein solch unterschiedlich elektronisches Verhalten von eigentlich gleichartigen Liganden in einem Molekül zu sehen.“

Fakten, Hintergründe, Dossiers
  • Koordinationschemie
  • metallorganische Chemie
  • Carbonyle
Mehr über Uni Freiburg
  • News

    Neue Oxidationsstufe von Rhodium entdeckt

    Mayara da Silva Santos, Doktorandin am Physikalischen Institut der Universität Freiburg, hat eine neue Oxidationsstufe des Rhodiums entdeckt. Das chemische Element findet als eines der katalytisch wichtigen Platinmetalle zum Beispiel in Autokatalysatoren Verwendung. Rhodium ist eigentlich b ... mehr

    Wichtiger Meilenstein auf dem Weg zur Übergangsmetall-Katalyse mit Aluminium

    Den Chemiker*innen Philipp Dabringhaus, Julie Willrett und Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist die Synthese des niedervalenten kationischen Aluminiumkomplexes [Al(AlCp*)3]+ durch eine Metathese-Reaktion gelungen. Ihre For ... mehr

    Neue Einblicke zu Anordnung und Mobilität von Molekülen auf Nanopartikel-Oberfläche

    Die Bindungskonfiguration von Molekülen mit einer Oberfläche ist von zentraler Rolle in chemischen Reaktionen. Die Möglichkeit, Bindungskonfigurationen in isolierten Nanosystemen zu untersuchen, ist deshalb von hohem Interesse. Einem Freiburger Forscherteam um Dr. Lukas Bruder und Prof. Dr. ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr