30.09.2022 - Universität Rostock

“Verschraubt und zugenäht!” – Spiralförmige Fehlstellen machen dreidimensionale photonische Isolatoren robust

Wissenschaftlich-technologischer Durchbruch stellt einen wichtigen Schritt auf dem Gebiet der topologischen Photonik dar

Wissenschaftlern der Universität Rostock und des Technion Haifa ist es erstmals gelungen, einen dreidimensionalen topologischen Isolator für Licht zu erzeugen. Eine sorgfältig platzierte Fehlstelle sorgt dafür, dass Lichtsignale sich geschützt entlang der Oberfläche dieses synthetischen Materials ausbreiten können, ohne gestreut zu werden. Ihre Entdeckung wurde kürzlich im Fachjournal „Nature“ veröffentlicht.

Kristalle faszinieren die Menschheit bereits seit Jahrtausenden – zunächst mit ihrer offensichtlichen Schönheit und eleganten Symmetrie sowie in modernerer Zeit auch dank ihrer mannigfaltigen technologischen Anwendungen. Da sich Kristalle durch eine regelmäßige Gitteranordnung ihrer kleinsten Bausteine auszeichnen, werden ihre physikalischen Eigenschaften in entscheidendem Maße durch die Reinheit ihres Gitters bestimmt. Dennoch müssen Defekte kein Makel sein. So kann bereits die kleinste Prise gezielt eingebrachter Atome aus benachbarten Gruppen des Periodensystems ansonsten unscheinbare Siliziumplättchen in leistungsstarke Prozessoren verwandeln, die Milliarden von Rechenoperationen pro Sekunde durchführen – oder in hocheffiziente Solarzellen, die den stetig wachsenden Energiehunger unserer elektronischen Geräte nachhaltig zu stillen vermögen.

Das Konzept regelmäßiger Strukturen ist nicht nur in der Materialwissenschaft von Relevanz, sondern erlaubt auch die mathematische Beschreibung der Lichtausbreitung in gitterförmigen Anordnungen sogenannter Wellenleiter. Diese ‚Schaltkreise für Licht‘ beschäftigen Professor Alexander Szameit schon lange. „Jedes Kind weiß, dass Lichtstrahlen sich geradlinig ausbreiten und sich allenfalls durch Reflexion an einem Spiegel oder die Brechung an einer Linse ablenken lassen“, umschreibt der Leiter der Arbeitsgruppe für experimentelle Festkörperoptik der Universität Rostock unser alltägliches Verständnis für Licht. „Darum erstaunt es mich immer wieder, dass wir Licht tatsächlich auf definierte Bahnen leiten können und es zwischen ihnen hin- und herspringen kann wie die Elektronen in einem Kristall.“ Diese Idee bildet die Grundlage seiner Forschung, die Wellenleitersysteme nutzt, um verschiedene Facetten der Festkörperphysik auf die Optik zu übertragen und gänzlich neue Effekte und neuartige funktionelle Strukturen zu entwickeln.

So gelang es den Rostocker Physikern kürzlich in Zusammenarbeit mit dem Technion Haifa (Israel) und der Universität Zhejang (China), den ersten dreidimensionalen topologischen Isolator für Licht zu konstruieren. „Topologische Isolatoren sind eine eigenständige Phase von Materie, die überhaupt erst vor wenigen Jahrzehnten entdeckt wurde“, umreißt Autor Dr. Lukas Maczewsky den Ausgangspunkt seiner Experimente. „Ihr photonisches Gegenstück kann Licht um Defekte und scharfe Ecken herumleiten und schützt es dabei vor ansonsten unvermeidlicher Streuung.“ Die unglaublich hohe Ausbreitungsgeschwindigkeit macht es jedoch normalerweise nötig, mindestens eine der Raumrichtungen zu opfern um Licht in den verbleibenden Richtungen zu kontrollieren. Dementsprechend waren bisherige Ansätze der topologischen Photonik auf eindimensionale oder planare Anordnungen beschränkt.

Diese Einschränkungen wurden nun durch das schlagkräftige Forscherteam auf elegante Weise überwunden: durch die gezielte Platzierung eines schraubenförmigen Gitterdefekts. Diese spezielle Form einer Fehlstelle verbindet benachbarte Gitterebenen auf systematische Weise, die sich wie eine Wendeltreppe um eine zentrale Achse winden. Doktorand und Koautor Julius Beck führt aus: „Diesen Übergang zwischen einem lockeren Stapel aus einzelnen Ringen und einer durchgängigen Spirale haben wir genutzt, um den ersten 3D-topologischen Isolator für Licht herzustellen.“

Als Ergebnis der erfolgreichen internationalen Kollaboration im Rahmen des noch jungen Sonderforschungsbereiches „LiMatI“ stellt dieser wissenschaftlich-technologische Durchbruch einen wichtigen Schritt auf dem Gebiet der topologischen Photonik dar. Wenngleich es noch einige Hürden zu überwinden gibt, bis die hierbei gewonnenen Erkenntnisse tatsächlich zum Einsatz kommen können, haben diese Entwicklungen enormes Potential für verschiedenste innovative Zukunftstechnologien wie beispielsweise kompakte dreidimensionale Schaltkreise für optische Quantencomputer und funktionalisierte optische Materialien mit maßgeschneiderten Eigenschaften für hochempfindliche optische Sensoren.

Fakten, Hintergründe, Dossiers
Mehr über Uni Rostock
  • News

    Fraktaler Antrieb: Photonen auf der Überholspur

    Forscher der Universität Rostock haben ein neuartiges mikrostrukturiertes Material entwickelt, das Lichtsignale mit höherer Geschwindigkeit transportiert und sie dabei vor Streuung und äußeren Störquellen abschirmt. Diese Entdeckung wird vom Fachjournal „Science“ am 12. Mai 2022 online verö ... mehr

    Künstliche Quasikristalle aus Laserlicht erzeugt

    Physiker der Arbeitsgruppe um Professor Alexander Szameit an der Universität Rostock haben in Zusammenarbeit mit Professor Stefano Longhi vom Polytechnikum Mailand (Italien) mithilfe von Licht einen neuartigen dreifachen Phasenübergang erzeugt. Bei diesem ändern sich sprunghaft drei fundame ... mehr

    Rostocker Wissenschaftler enttarnen Diamant und Graphit

    Riko Siewert will Gymnasiallehrer werden. Doch zuvor hat der 27-Jährige, der am Institut für Chemie der Universität promoviert, gemeinsam mit seinem Betreuer Professor Sergey P. Verevkin in einem internationalen Projekt die Stabilität von Diamant und Graphit untersucht. Denn: Jüngste quante ... mehr

  • q&more Artikel

    Kaffee – eine Welt der Vielfalt

    Mit der Umwandlung von grünem Kaffee zur braunen Röstbohne entstehen Mythos, Trend und Begierde. Vom kleinen Gourmetröster bis zur industriellen Großanlage ergibt sich aufgrund der gestiegenen Anforderungen an Qualität und Vielfältigkeit der zunehmende Bedarf, die während der Kaffeeröstung ... mehr

  • Autoren

    Dr. Hendryk Czech

    Hendryk Czech, Jahrgang 1988, promovierte im Jahr 2017 an der Universität Rostock und arbeitete anschließend im Jahr 2018 als Postdoktorand an der Universität von Ostfinnland in Kuopio. Seit 2019 ist er Projektmanager des Deutsch-Israelischen Helmholtz International Laboratory aeroHEALTH am ... mehr

    Prof. Dr. Ralf Zimmermann

    Ralf Zimmermann, Jahrgang 1963, promovierte im Jahr 1995 an der TU München/Weihenstephan in Chemie und leitete seit 1997 die Abteilungen „Umweltchemie und Prozessanalytik“ an der BIfA (Bayerisches Institut für Angewandte Umweltforschung und -technik GmbH) sowie „Analytische Lasermassenspekt ... mehr

Mehr über Technion - Institute of Technology
  • News

    Grüner Wasserstoff: Israelisch-deutsches Team löst das Rätsel um Rost

    Metalloxide wie Rost eignen sich als Photoelektroden, um „grünen“ Wasserstoff mit Sonnenlicht zu erzeugen. Doch trotz jahrzehntelanger Forschung an diesem preisgünstigen Material sind die Fortschritte begrenzt. Ein Team am HZB hat nun gemeinsam mit Partnern von der Ben-Gurion-Universität un ... mehr

    Goldpartikel heilen sich selbst

    Selbstheilende Materialien können Schäden wie Kratzer, Risse oder Dellen selbständig reparieren und ihre ursprüngliche Gestalt wieder annehmen. Dafür müssen sie aus mehreren Komponenten zusammengesetzt werden, deren kombinierte Eigenschaften zu den gewünschten Eigenschaften führen. Wissensc ... mehr

    Wacker verleiht Wacker-Siliconpreis 2007 an Professor Yitzhak Apeloig

    Der Wacker Silicone Award geht in diesem Jahr an Prof. Dr. Yitzhak Apeloig, Präsident des Technion - Israel Institute of Technology in Haifa. Apeloig wird damit für seine wegweisenden theoretischen und experimentellen Arbeiten auf dem Gebiet der siliciumorganischen Chemie ausgezeichnet. Der ... mehr