Meine Merkliste
my.chemie.de  
Login  

Universeller Proteinadapter

RUB-Forscher entwickeln chemisch spezialisierte Germaniumoberfläche

07.03.2013

© modifiziert nach JACS

An den Germaniumkristall (grau) hefteten die Bochumer Forscher Sauerstoffatome und erzeugten dadurch sogenanntes „aktiviertes Germanium“. Dieses diente als Andockstelle für Triethoxysilane, an die sich wiederum Proteine mit His-Tag binden lassen – zum Beispiel Ras. Das Schalterprotein Ras kann zwei Zustände – „An“ und „Aus“ – annehmen, die die Forscher mit der Infrarot-Differenz-Spektroskopie im Detail untersuchen konnten.

Forscher der Ruhr-Universität Bochum haben eine neue Methode entwickelt, um Proteine an die Oberfläche von Germaniumkristallen zu heften – erstmals auch Membranproteine. Das erlaubt, Interaktionen zwischen Molekülen mittels Infrarotspektroskopie zeitaufgelöst bis auf einzelne Atome genau zu verfolgen. Das Verfahren setzen sie im EU-Projekt „Kinetics for Drug Discovery, K4DD“ ein, in dem Wissenschaftler das Zusammenspiel von Arzneistoffen und ihren Interaktionspartnern ergründen. Mit der neuen Technik können sie nun auch sogenannte G-Protein-gekoppelte Rezeptoren untersuchen, die Wirkort für viele Medikamente sind.

Proteine über Elektronenpaarbindungen an Germanium heften

Mit der Infrarot (IR)-Differenz-Spektroskopie analysieren Forscher dynamische Vorgänge in Proteinen. In einer früheren Studie war es Bochumer Biophysikern bereits gelungen, Proteine über Lipide an Germaniumoberflächen zu binden und sie so der IR-Spektroskopie zugänglich zu machen (wir berichteten imSeptember 2012). Dabei strahlen die Forscher in den Germaniumkristall Infrarotlicht ein, das vielfach an dessen Grenzflächen reflektiert wird. Ein Teil des Lichts tritt aus dem Kristall aus und erreicht so die auf der Oberfläche gebundenen Proteine. Früher nutzten die Forscher hydrophile Wechselwirkungen zwischen Kristall und Lipid – also Wechselwirkungen zwischen polaren Molekülgruppen – für die Bindung. Bei dem neuen Verfahren koppeln sie die Proteine über eine Elektronenpaarbindung an das Germanium. Diese ist stabiler und funktioniert sowohl für lösliche als auch für Membranproteine. „Membranproteine benötigen eine Art Seife als Außenhülle, ein Detergenz, welches eine Lipidschicht abwäscht. Unsere neu entwickelte Oberfläche bleibt im Gegensatz dazu stabil“, sagt Jonas Schartner.

Chemisches Baukastensystem

Wie bei einem Baukastensystem platzierten die Wissenschaftler verschiedene Molekülschichten übereinander auf dem Germaniumkristall. Zunächst erzeugten sie auf der Germaniumoberfläche Hydroxylgruppen, die jeweils ein Sauerstoff- und ein Wasserstoffatom besitzen. Das Produkt bezeichnet man als aktiviertes Germanium. Die nächste Schicht bildete eine neue Art von Triethoxysilanen, eine Kohlenwasserstoffverbindung, die das RUB-Team selbst herstellte. Ein Ende der Triethoxysilane verankerten die Forscher kovalent, also über eine Elektronenpaarbindung, am Germanium. Das andere Ende bauten sie zu einem Proteinfänger um. An diesen lassen sich alle Proteine knüpfen, die einen bestimmten Adapter, das His-Tag, tragen. „Es sind bereits viele Proteine mit diesem Universaladapter verfügbar“, sagt Carsten Kötting.

Kontrolliert die Germaniumoberfläche modifizieren

Mit Fourier-Transform-Infrarotspektroskopie und X-Ray-Photoelektronen-Spektroskopie (XPS) behielten die Forscher im Auge, was beim Stapeln der verschiedenen Schichten auf dem Germaniumkristall passierte. Gemeinsam mit Prof. Dr. Martin Muhler und Bastian Mei vom Lehrstuhl für Technische Chemie konnten die Biophysiker mit der XPS die atomare Zusammensetzung der Schichten genau bestimmen. Proteine können auch mit anderen Techniken, etwa der „Surface Plasmon Resonance“, auf Oberflächen beobachtet werden. „Dabei erfolgt die schrittweise Modifikation der Oberfläche blind“, erklärt Jonas Schartner. „Wir haben jeden Modifikationsschritt live beobachtet und so eine sehr gute Kontrolle über den Vorgang.“

Funktionstest für das neue Verfahren geglückt

Ein Test bestätigte, dass die neu gebastelte Oberfläche ihren Zweck erfüllt. Die Forscher bestückten den Germaniumkristall mit dem Schalterprotein Ras, das eine wichtige Rolle bei der Krebsentstehung spielt. Dort ließen sie es mit einem zweiten Molekül interagieren, das Ras an- und abschaltete. Diese beiden Zustände – „An“ und „Aus“ – spiegelten sich in den Infrarot-Differenzspektren wider. Mit der neuen Methode machte das RUB-Team also erfolgreich eine Proteininteraktion sichtbar. In Zukunft sollen Arzneistoffe und ihre Rezeptoren auf den Prüfstand. „Mit der herkömmlichen ‚Surface Plasmon Resonance‘-Methode kann nur festgestellt werden, ob eine Interaktion stattfindet. Eine Besonderheit unserer Methode ist, dass unterschiedliche Arten von Wirkstoffinteraktionen auch zu Unterschieden im Differenzspektrum führen“, so Jörn Güldenhaupt. „Durch diese Zusatzinformation kann der Wirkmechanismus viel besser untersucht werden. Das kann bei der Wirkstoffentwicklung entscheidend sein.“

Fakten, Hintergründe, Dossiers
  • Ruhr-Universität Bochum
Mehr über Ruhr-Universität Bochum
  • News

    Eine Legierung, die bei hohen Temperaturen ihr Gedächtnis behält

    Per Computersimulation berechnete Alberto Ferrari einen Designvorschlag für eine Formgedächtnislegierung, die auch bei hohen Temperaturen lange leistungsfähig bleibt. Alexander Paulsen stellte sie her und bestätigte experimentell die Vorhersage. Mit der Legierung aus Titan, Tantal und Skand ... mehr

    Warum es künstliche Intelligenz eigentlich noch nicht gibt

    Die Prozesse, die der künstlichen Intelligenz heute zugrunde liegen, sind eigentlich dumm. Bochumer Forscher arbeiten daran, sie schlauer zu machen. Umbruch, Revolution, Megatrend, vielleicht auch Gefahr: Das Thema künstliche Intelligenz durchdringt alle Branchen, beschäftigt sämtliche Medi ... mehr

    Wie man Biokatalysatoren unsterblich macht

    Sauerstoff bedroht nachhaltige Katalysatoren, die Wasserstoff in Brennstoffzellen umwandeln. Forscher aus Bochum und Marseille haben ein Mittel dagegen entwickelt. Effiziente Katalysatoren für die Umwandlung von Wasserstoff in Brennstoffzellen und andere Stoffe für die Energiewende basieren ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.