24.05.2013 - Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Der richtige Blick für Spiegelmoleküle

Eine neue Methode kann links- und rechtshändige Moleküle zuverlässig unterscheiden

Die Chemie des Lebens kennt rechtshändige und linkshändige Moleküle, die ganz unterschiedliche Wirkung haben können. Ein amerikanisch-deutsches Forscherteam hat jetzt eine neue Technik entwickelt, mit der sich diese beiden spiegelbildlichen Varianten eines Stoffs zuverlässig auseinanderhalten lassen. Die Methode erkennt die sogenannten Enantiomere einer Verbindung im Prinzip sogar in Stoffgemischen. Die Technik habe zudem das Potenzial, die Enantiomere eines Stoffs nicht nur zu unterscheiden, sondern auch zu trennen, berichtet das Entwicklerteam, zu dem auch Melanie Schnell vom Hamburger Center for Free-Electron Laser Science (CFEL) gehört.

Zahlreiche chemische Verbindungen kommen in zwei Varianten vor, die aus denselben Zutaten bestehen, sich aber zueinander verhalten wie Original und Spiegelbild. In Anlehnung an die linke und rechte Hand, die ebenfalls spiegelbildlich geformt sind, heißen solche Stoffe chiral, vom griechischen Wort cheiros für Hand. „Die Unterscheidung beider Varianten einer chiralen Verbindung gehört zu den schwierigsten und gleichzeitig wichtigsten Aufgaben in der analytischen Chemie", betont David Patterson von der US-amerikanischen Harvard-Universität. In der Biologie, aber auch bei zahlreichen chemischen Reaktionen, spielt die Chiralität (Händigkeit) eines Moleküls eine entscheidende Rolle. So baut die Chemie des Lebens fast ausschließlich auf linkshändige Aminosäuren und rechtshändige Zuckermoleküle. Warum das so ist, und wie die Natur dies erreicht, ist weitgehend ungeklärt.

In der chemischen Synthese entstehen häufig beide Varianten (Enantiomere) solcher Stoffe in derselben Menge. „Die falsche Sorte einer Verbindung kann im Organismus jedoch ganz anders wirken", erläutert Melanie Schnell. Die Wissenschaftlerin des Heidelberger Max-Planck-Instituts für Kernphysik leitet am CFEL eine unabhängige Max-Planck-Forschungsgruppe zur Erkundung von Struktur und Dynamik von Molekülen. „Im besten Fall ist sie dann unwirksam, im schlimmsten Fall sogar giftig." Insbesondere für die Pharmaindustrie ist die Herstellung reiner Enantiomere daher von großem Interesse, und es existieren bereits einige Verfahren zur gezielten Synthese oder nachträglichen Anreicherung von Enantiomeren mancher Wirkstoffe.

Enantiomere lassen sich mithilfe ihres Dipolmomentes unterscheiden

Schon die beiden Varianten auseinanderzuhalten, ist jedoch keine leichte Aufgabe – sie gleichen sich in fast allen physikalischen Eigenschaften. Am einfachsten verraten sich reine Enantiomere durch ihre Wirkung auf linear polarisiertes Licht, also auf Lichtwellen, die alle in derselben Ebene schwingen. Die eine Variante eines chiralen Moleküls dreht diese Schwingungsebene nach links, die andere nach rechts. Allerdings sind diese Effekte insbesondere bei Enantiomergemischen und bei Stoffgemischen mit mehreren Verbindungen klein, und die Enantiomere müssen für diese Untersuchung in der Regel flüssig vorliegen.

Das Team um David Patterson hat nun eine Methode entwickelt, die eine andere Eigenschaft der Enantiomere unterscheidet, das sogenannte Dipolmoment. Es beschreibt die Wechselwirkung eines Moleküls mit einem externen elektrischen Feld. Zwar sind die Dipolmomente beider Enantiomere vom Betrag her stets gleich, sie unterscheiden sich wegen des spiegelbildlichen Aufbaus jedoch in der Orientierung ihrer einzelnen Komponenten entlang der drei Raumrichtungen. Das nutzen die Forscher mit einer Apparatur aus, bei der sie die Wechselwirkung der Moleküle mit Mikrowellenstrahlung messen.

Die zu testenden Stoffe müssen dafür als Gas vorliegen, was bei vielen sowohl industriell verwendeten als auch biologisch relevanten Verbindungen möglich ist. Das Gas wird in eine Kältekammer geschleust und auf minus 266 Grad Celsius gekühlt. Dort wird es in ein elektrisches Feld gebracht und anschließend mit Mikrowellen einer bestimmten Wellenlänge bestrahlt, mit denen die Moleküle zu Rotationen angeregt werden. Durch die Rotationen senden die Moleküle wiederum eigene Strahlung aus, die sich messen lässt. Die sogenannte Phase dieser Strahlung verrät den Enantiomertyp – wenn die abgestrahlte elektromagnetische Welle bei linkshändigen Molekülen zu einem bestimmten Zeitpunkt gerade das positive Maximum erreicht hat, besitzt sie bei rechtshändigen Molekülen zur selben Zeit das negative Maximum, beide Wellen sind also gegenläufig.

Mit einer Weiterentwicklung der Methode könnten sich Enantiomere trennen lassen

Die Forscher testeten ihr Verfahren mit 1,2-Propandiol, einer organischen Verbindung, deren Eigenschaften sehr gut vermessen sind, und die sich als reine rechts- und linkshändige Enantiomere kaufen lässt. Die Methode konnte nicht nur die beiden Enantiomere klar auseinander halten, sondern auch ihr Mischungsverhältnis in Enantiomergemischen bestimmen.

Die Mikrowellenfrequenz kann dabei sehr fein abgestimmt werden, um nur die gewünschte Rotation bei den Molekülen eines bestimmten Stoffs anzuregen. So lassen sich prinzipiell auch Stoffgemische untersuchen. „Wir können künftig Mischungen von verschiedenen Molekülen messen und bekommen die Anteile ihrer Enantiomere", sagt Max-Planck-Forscherin Schnell. Entsprechend planen die Wissenschaftler in einem nächsten Schritt, die Technik auf ein sogenanntes Breitbandspektrometer auszuweiten, das sich am Hamburger CFEL befindet und mit dem sich dann Stoffgemische auf ihre Enantiomeranteile analysieren lassen.

„Darüber hinaus bietet das Verfahren die Perspektive, daraus eine Methode zur Trennung von Enantiomeren zu entwickeln", erläutert John Doyle. Dazu ließe sich ein Enantiomer möglicherweise gezielt mit einem Laser anregen und mit einem weiteren Laserblitz, der auf entsprechend angeregte Moleküle anders wirkt als auf nicht angeregte, vom anderen Enantiomer trennen. Ein solches Verfahren habe typischerweise zwar nur einen geringen Wirkungsgrad, durch die schnelle Wiederholung ließe sich jedoch rasch ein lohnender Enantiomerüberschuss ansammeln, schätzen die Wissenschaftler.

 

Fakten, Hintergründe, Dossiers
  • Deutsches Elektrone…
  • Universität Hamburg
  • Max-Planck-Gesellschaft
Mehr über Max-Planck-Gesellschaft
  • News

    Neue Mikroskopie-Methode löst Fluoreszenzmoleküle nanometergenau auf

    Wissenschaftler um Stefan Hell vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und dem Heidelberger MPI für medizinische Forschung haben eine neue Lichtmikroskopie-Methode entwickelt, MINSTED genannt. Sie trennt fluoreszenzmarkierte Details mit molekularer Schärfe. Für N ... mehr

    Winzlinge im Pflanzenschutz als „Trojanisches Pferd“

    Jährlich entsteht durch Pilzbefall allein beim Weinanbau ein Schaden von einer Milliarde Euro. Herkömmliche Pflanzenschutzmittel sind bei der Bekämpfung größtenteils machtlos. Eine geplante Ausgründung des Max-Planck-Instituts für Polymerforschung (MPI-P) soll nun die Forschung an nachhalti ... mehr

    Neuer Feststoffkatalysator für die Wasserelektrolyse entdeckt

    “Grüner Wasserstoff” erfährt seit Einführung der Nationalen Wasserstoffstrategie eine hohe Aufmerksamkeit als Energieträger und Baustein für verschiedene industrielle Prozesse. Seine Herstellung durch die Wasserelektrolyse unter Verwendung von nachhaltigem Strom ist daher ebenfalls stark in ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Mehr über Uni Hamburg
  • News

    Umfrage: Bereitschaft zu Corona-Impfung sinkt

    (dpa) Die Bereitschaft zu einer Corona-Impfung ist einer Studie zufolge in Deutschland zuletzt gesunken. So sei der Anteil der Befürworter in den vergangenen drei Monaten von 70 auf 61 Prozent zurückgegangen, berichtete die «Süddeutsche Zeitung» am Sonntag unter Berufung auf eine Umfrage. D ... mehr

    Korkenzieher-Laser sortiert Spiegelmoleküle

    Viele der molekularen Bausteine des Lebens gibt es in zwei spiegelbildlichen Versionen. Obwohl scheinbar identisch, können diese beiden sogenannten Enantiomere ein völlig unterschiedliches chemisches Verhalten aufweisen – eine Tatsache, die große Auswirkungen auf unser tägliches Leben hat. ... mehr

    Spontanes Auftreten magnetischer Wirbel entdeckt

    Seit ihrer experimentellen Entdeckung vor zehn Jahren sind magnetische Skyrmionen – stabile Wirbel in magnetischen Materialien – in den Fokus der Forschung geraten. Aufgrund ihrer hohen Stabilität, der Möglichkeit sie wenige Dutzend Atome klein zu machen und ihrer Manipulierbarkeit mit elek ... mehr

  • Autoren

    Prof. Dr. Markus Fischer

    Jg. 1965, studierte Lebensmittelchemie an der Technischen Universität München und promovierte 1997 im Bereich Molekularbiologie/Proteinchemie. 2003 habilitierte er sich für die Fächer Lebensmittelchemie und Biochemie. Seit 2006 ist er Direktor des Instituts für Lebensmittelchemie der Univer ... mehr

    Luise Herrmann

    Jg. 1983, studierte bis 2010 Lebensmittelchemie an der Universität ­Hamburg. In ihrer Diplomarbeit beschäftigte sie sich mit der Differenzierung von Weizen und Dinkel über deren Proteinmuster. Nach dem Studium absolvierte sie ihr praktisches Jahr teils in Nantes, Frankreich und in Hamburg. ... mehr

    Dr. Anke Heisig

    Anke Heisig, geb. 1961, studierte Biologie mit dem Schwerpunkt Molekularbiologie an der FU Berlin und promovierte am Max-Planck-Institut für Molekulare Genetik in Berlin-Dahlem. Seit 1998 leitet sie einen DNA-Sequenzierservice zunächst an der Universität Bonn. Nach ihrer Tätigkeit bei der F ... mehr

Mehr über Deutsches Elektronen-Synchrotron DESY
  • News

    Das Ei im Röntgenstrahl

    Mit DESYs Röntgenlichtquelle PETRA III hat ein Forschungsteam die Strukturänderungen in Eiern beim Kochen analysiert. Die Untersuchung zeigt, wie sich die Proteine im Hühnereiweiß beim Erhitzen entfalten und vernetzen, um eine feste Struktur zu bilden. Die innovative Untersuchungsmethode is ... mehr

    Erstmals Nanomaterialwachstum in Echtzeit beobachtet

    Erstmals ist es einem Forschungsteam gelungen, die Geburtsmillisekunden einer Goldbeschichtung auf einem Polymer in Echtzeit festzuhalten. Mit Hilfe von DESYs hochbrillanter Röntgenquelle PETRA III konnte das Team die sehr frühen Stadien des Wachstums eines Metall-Polymer-Hybridmaterials be ... mehr

    Nanomaterialien in 3D-Röntgenperspektive

    Ein Team von DESY und der Universität Hamburg hat aus einer zweidimensionalen Durchleuchtung eines chemischen Reaktors dreidimensionale Schnittbilder von Nanostrukturen erzeugt. Die Wissenschaftler nutzten dazu die Methode der Röntgenptychographie, bei der aus der Überlagerung (Interferenz) ... mehr

  • Videos

    DESYs Röntgenlaser FLASH - High-Speed-Kamera für den Nanokosmos

    Wie arbeiten die Moleküle des Lebens? Wie funktionieren die Werkstoffe der Zukunft? Wie können wir effizienter Energie gewinnen und Ressourcen schonen? Fragen and FLASH, die High-Speed-Kamera für den Nanokosmos. mehr

    Teilchenzoo: Und nun?

    Mit dem extrem erfolgreichen Standardmodell der Teilchenphysik verstehen wir bislang nur rund 5% des Universums. Wie geht es weiter - Stringtheorie, Supersymmetrie, DESY-Physiker Georg Weiglein und Gudrid Moortgat-Pick diskutieren die großen offenen Fragen der Teilchenphysik. mehr

    Teilchenzoo: Photonen, Gluonen und andere Kräfteteilchen

    "Die vier Kräfte" - das ist kein Gericht aus dem Chinarestaurant, sondern das sind die vier Grundkräfte der Natur: die starke, die schwache, die elektromagnetische und die Schwerkraft. DESY-Doktorand Marc Wenskat erklärt ihre Wechselwirkungsteilchen und zeigt dabei, dass ein kleiner Magnet ... mehr

Mehr über Harvard University
  • News

    Bahnbrechende Methode bildet die Interaktionen zwischen atomar dünnen Schichten ab

    Wenn zwei atomar dünne Schichten eines Materials aufeinandergestapelt und leicht verdreht werden, können sie radikal unterschiedliche Eigenschaften entwickeln. Manche werden supraleitend, andere nehmen sogar magnetische oder elektronische Eigenschaften durch die Wechselwirkung der beiden Sc ... mehr

    Ultrakaltes Rätsel gelöst

    In einer berühmten Parabel begegnen drei blinde Männer zum ersten Mal einem Elefanten. Jeder berührt einen Teil - den Rüssel, das Ohr oder die Seite - und schließt daraus, dass das Wesen eine dicke Schlange, ein Fächer oder eine Wand ist. Dieser Elefant, sagte Kang-Kuen Ni, ist wie die Quan ... mehr

    Die kälteste chemische Reaktion

    Die kälteste chemische Reaktion im bekannten Universum fand in einem scheinbar chaotischen Durcheinander von Lasern statt. Der Schein trügt: Tief in diesem akribisch organisierten Chaos, bei Temperaturen, die Millionen Mal kälter sind als der interstellare Raum, erreichte Kang-Kuen Ni eine ... mehr