07.06.2013 - Technische Universität München

Vielversprechendes Material für Lithium-Ionen-Akkus

Neue Gerüststruktur aus Bor und Silicium könnte den Weg zu höheren Kapazitäten weisen

Laptops könnten länger arbeiten und Elektroautos weiter fahren wenn es gelänge, die Kapazität ihrer Lithium-Ionen-Akkus weiter zu steigern. Einen entscheidenden Einfluss darauf hat ihr Elektrodenmaterial. Bisher besteht die negative Elektrode meist aus Graphit, dessen Schichten eine begrenzte Menge an Lithium einlagern können. Wissenschaftler der Technischen Universität München (TUM) haben nun ein Material aus Bor und Silizium entwickelt, das den Weg zu Systemen mit höheren Speicherkapazitäten weisen könnte.

Lädt man einen Lithium-Ionen-Akku, entstehen Lithium-Atome. Die Graphitschichten der negativen Elektrode nehmen sie auf. Doch die Kapazität des Graphits ist begrenzt: Auf sechs Kohlenstoff-Atome kommt maximal ein Lithium-Atom. Silicium könnte bis zu zehnmal mehr Lithium aufnehmen. Aber leider dehnt es sich dabei stark aus, was bei der Anwendung als Akku zu bisher nicht gelösten Problemen führt.

Auf der Suche nach einer Alternative zu reinem Silicium gelang es Wissenschaftlern der TU München nun, aus Bor und Silicium eine völlig neue Gerüststruktur aufzubauen, die sich als Elektrodenmaterial eignen könnte. Ähnlich wie die Kohlenstoff-Atome im Diamanten sind die Bor- und Silicium-Atome im neuen Lithium-Borsilicid (LiBSi2) tetraederförmig miteinander verbunden. Doch anders als der Diamant bilden sie zusätzlich Kanäle aus. „Offene Strukturen mit Kanälen  bieten prinzipiell die Möglichkeit Lithium ein- und wieder auszulagern“, sagt Thomas Fässler, Professor am Lehrstuhl für Anorganische Chemie der TU München. „Das ist eine wichtige Voraussetzung zur Anwendung als Material für die Anode in Lithium-Ionen-Akkus.“

Hochdrucksynthese

Im Hochdrucklabor des Departments of Chemistry and Biochemistry der Arizona State University gelang es den Wissenschaftlern, die Ausgangsstoffe Lithiumborid und Silicium zur Reaktion zu bringen. Bei einem Druck von 100.000 Atmosphären und Temperaturen um 900 ° Celsius bildete sich das gewünschte Lithium-Borsilicid. „Es ist eine Menge Fingerspitzengefühl und viel Erfahrung notwendig, um das richtige Verhältnis der Grundmaterialen und die richtigen Parameter herauszufinden“, erklärt Thomas Fässler.

Lithium-Borsilicid ist gegenüber Luft und Feuchtigkeit stabil und widersteht auch Temperaturen bis zu 800° Celsius. Als nächstes wollen Thomas Fässler und sein Doktorand Michael Zeilinger näher untersuchen, wie viele Lithium-Atome das Material aufnehmen kann und ob es sich beim Ladevorgang ausdehnt. Aufgrund seiner Kristallstruktur etwa könnte das Material sehr hart sein, was es auch als Diamant-Ersatz interessant machen würde.

Da die Struktur des Lithium-Borsilicids bisher einzigartig ist, durften Fässler und Zeilinger ihrem neuen Gerüst einen Namen geben. Zu Ehren ihrer Universität entschieden sie sich für den Namen „tum“.

Fakten, Hintergründe, Dossiers
  • TU München
  • Universität Augsburg
  • Stockholm University
Mehr über TU München
  • News

    Aus dem Labor zum Start-up – mit viel Psychologie

    Erfolgreiche Unternehmensgründungen aus der Wissenschaft sind in Deutschland selten. Ein Forschungsprojekt hat nun erstmals untersucht, welche psychologischen Faktoren die Gründungsprozesse von Wissenschaftlern beeinflussen. Sie zeigt, dass es diesen oft schwerfällt, aus einer forschenden e ... mehr

    Gefangenes Lithium

    Im Handy, Laptop oder auch im Elektroauto: überall verwenden wir Lithium-Ionen-Akkus. Doch nach einiger Zeit verlieren sie an Kapazität. Daher untersuchte ein deutsch-amerikanisches Forschungsteam den Aufbau und die Funktionsweise dieser Akkus mit Neutronenbeugung. Dabei fanden sie heraus, ... mehr

    Superkondensatoren statt Batterien

    Einem Team um Roland Fischer, Professor für Anorganische und Metallorganische Chemie an der Technischen Universität München (TUM) ist es gelungen, einen hocheffizienten Superkondensator zu entwickeln. Basis des Energiespeichers ist ein neuartiges, leistungsfähiges und dabei nachhaltiges Gra ... mehr

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... mehr

  • q&more Artikel

    Biobasierte Rohstoffströme der Zukunft

    Der anthropogene Klimawandel und die steigende Weltbevölkerung im Verbund mit zunehmender Urbanisierung induzieren globale Herausforderungen an unsere Gesellschaft, die nur durch technologische Fortschritte gelöst werden können. mehr

    Ein Geschmacks- und Aromaschub im Mund

    Der Ernährungstrend hin zu gesünderen Snacks ist ungebremst. Snacks aus gefriergetrockneten Früchten erfüllen die Erwartungen der Verbraucher an moderne, hochwertige Lebensmittel. Allerdings erfordert die Gefriertrocknung ganzer Früchte lange Trocknungszeiten ... mehr

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

  • Autoren

    Prof. Dr. Thomas Brück

    Thomas Brück, Jahrgang 1972, absolvierte sein Bachelorstudium (B.Sc.) 1996 in den Fächern Chemie, Biochemie und Management an der Keele University in Stoke on Trent, U.K. Er hält einen Masterabschluss (1997) in Molekularmedizin von derselben Universität und promovierte 2002 auf dem Gebiet d ... mehr

    Dr. Norbert Mehlmer

    Norbert Mehlmer, Jahrgang 1977, studierte Biologie an der Universität Salzburg und verfasste seine Diplomarbeit am Max-Planck-Institut für molekulare Genetik, Berlin. Er promovierte an den Max F. Perutz Laboratories (MFPL) der Universität Wien auf dem Gebiet Genetik/Mikrobiologie. Im Anschl ... mehr

    Dr. Mahmoud Masri

    Mahmoud Masri schloss sein Studium der Angewandten Chemie an der Universität Damaskus ab und erhielt 2010 seinen Master. Anschließend arbeitete er fünf Jahre als Qualitätssicherungsmanager. 2019 promovierte er im Fach Biotechnologie an der Technischen Universität München (TUM) mit einer Arb ... mehr

Mehr über Uni Augsburg
  • News

    Neue Methode zur temperaturabhängigen Erzeugung von Terahertz-Strahlung

    Physiker der Universitäten Augsburg und Münster haben einen neuartigen Emitter zur Erzeugung von Terahertz-Strahlung vorgestellt, der sich durch Variation der Temperatur an- oder abschalten lässt. In Zukunft könnte sie möglicherweise den Bau von Strahlenquellen höherer Intensität ermögliche ... mehr

    Metall mit ungewöhnlichen Eigenschaften

    Eine chinesisch-deutsche Forschungskooperation mit Beteiligung der Universität Augsburg hat bei einem Metall Eigenschaften nachgewiesen, die sich mit gängigen physikalischen Theorien nicht erklären lassen. Die Ergebnisse wurden an einer speziellen metallischen Verbindung mit ungewöhnlichen ... mehr

    Einkristallzüchtung bei 1600°C – statt in Warmwasser

    Der Erkenntnisgewinn in der Festkörperphysik ist untrennbar mit der Entwicklung neuer Materialien verbunden. Insbesondere die Züchtung von Einkristallen, in denen alle Atome einer Materialprobe in streng periodischer Anordnung vorliegen und ein durchgehendes, einheitliches und homogenes Kri ... mehr

Mehr über Stockholm University
  • News

    Neue NiMH-Batterien schneiden besser ab, wenn sie aus recycelten alten NiMH-Batterien hergestellt werden

    Eine neue Methode für das Recycling alter Batterien kann leistungsfähigere und billigere wiederaufladbare Hydridbatterien (NiMH) liefern, wie in einer neuen Studie von Forschern der Universität Stockholm gezeigt wurde. "Die neue Methode ermöglicht es, das aufbereitete Material direkt in der ... mehr

    Ein nachhaltiges neues Material zur Kohlendioxidabscheidung

    In einer gemeinsamen Forschungsstudie aus Schweden haben Wissenschaftler der Chalmers University of Technology und der Stockholm University ein neues Material zur Abscheidung von Kohlendioxid entwickelt. Das neue Material bietet viele Vorteile - es ist nachhaltig, hat eine hohe Abscheidegra ... mehr

    Neue Methode zur Grundwasserüberwachung

    Die Überwachung von Wasserressourcen kann in Zukunft effektiver und sicherer erfolgen. Wissenschaftler des Helmholtz-Zentrums für Umweltforschung (UFZ) und der Universität Stockholm entwickelten dazu ein neues Berechnungsverfahren, das es erlaubt, von einzelnen Kontrollbrunnen besser auf de ... mehr

Mehr über Arizona State University