16.11.2015 - Technische Universität Wien - Institut für Verbrennungskraftmaschinen u. Kraftfahrzeugbau

Quanten, die Fehler verzeihen

An der TU Wien werden die Quantenzustände von Stickstoffatomen mit Mikrowellen manipuliert

Präzision ist gefragt, wenn man quantenphysikalische Experimente durchführen will. An der TU Wien forscht man an Stickstoffatomen, die in Diamanten eingebaut sind. Um den Quantenzustand eines solchen Atoms zu verändern und wirklich sicher sein zu können, dass das Ergebnis stimmt, muss man das System allerdings mit einem exakt richtigen Mikrowellenpuls bestrahlen. In der Praxis ist das ein schwieriges Problem. Nun gelang es, ein Rezept für die Herstellung "robuster" Quanten-Umschaltprozesse zu entwickeln, das auch dann noch zum richtigen Ergebnis führt, wenn die Anfangsbedingungen mit gewissen Fehlern behaftet sind.

Modell für die Quantentechnologie

Quantenphysikalische Systeme, deren Zustand gezielt umgeschaltet werden kann, benötigt man in unterschiedlichen Bereichen. Man kann sie etwa verwenden, um extrem präzise Messgeräte zu bauen, und auch an Konzepten für Quantencomputer wird geforscht. Ein besonders interessantes Quantensystem sind Stickstoffatome, die in einem winzigen Diamanten eingebaut sind. Gemessen an der Zeit, die man benötigt, um sie zu manipulieren, bleibt ihr Zustand relativ lange stabil, daher eignen sie sich gut als Speicher für Quanteninformation. Mit Mikrowellen kann man die Stickstoffatome recht einfach zwischen zwei verschiedenen Quantenzuständen unterschiedlicher Spinrichtung hin und her schalten.

Wenn man wirklich sicher sein will, das Atom in den richtigen Zustand gebracht zu haben, muss man genau wissen, welchen Mikrowellenpuls man braucht. "Die einfachste Variante ist, die Atome für eine bestimmte Zeit mit konstanter Mikrowellenstrahlung zu beleuchten", erklärt Tobias Nöbauer aus der Arbeitsgruppe von Johannes Majer am Atominstitut der TU Wien. Die genau richtige Zeitspanne für die Mikrowellenbestrahlung zu erwischen, ist allerdings schwierig. "Ob man am Ende tatsächlich genau den richtigen Quantenzustand erreicht, hängt von vielen Faktoren ab", erklärt Nöbauer. "Von der genauen Frequenz der Mikrowellenstrahlung, von mikroskopischen Details der Probe und störenden Feldern von außen." Man kann es niemals schaffen, über all diese Fehlerquellen perfekt Bescheid zu wissen – für die Praxistauglichkeit von Quantentechnologien ist das ein großes Problem.

Intelligente Fehlerkorrektur

Manchmal ist es aber sinnvoll, nicht den kürzesten Weg zu gehen, sondern den robustesten. In Zusammenarbeit mit der Gruppe von Florian Mintert am Freiburg Institute for Advanced Studies / Imperial College London wurde in Computersimulationen berechnet, wie man verschiedene Mikrowellenfrequenzen optimal überlagern kann, sodass sie zu einem Umschaltprozess des Stickstoffatoms führen, selbst wenn bestimmte äußere Parameter etwas anders sind als gedacht. "Der Quantenzustand tritt dann eine etwas kompliziertere Reise durch den Raum der möglichen Zustände an. Auch wenn er anfangs ein bisschen anders ausgesehen hat als gedacht, kommt er am Ende mit großer Sicherheit dort an, wo wir das wollen", sagt Tobias Nöbauer. Im Experiment an der TU Wien konnte das Team zeigen, dass der computeroptimierte Puls die Erfolgswahrscheinlichkeit tatsächlich drastisch erhöht. So führt etwa ein optimierter Puls selbst dann noch sehr genau zum korrekten Ziel, wenn er mit einer doppelt überhöhten Leistung oder um eine halbe Oktave "verstimmten" Frequenz abgespielt wird.

Robustheit und Skalierbarkeit

Durch den optimierten Umschaltprozess kann man nun die Quanteneigenschaften der Stickstoffatome in den Diamantpartikeln viel besser nutzen. "Im Labor, in einem völlig kontrollierten Versuchsaufbau, kann man es schaffen, den Mikrowellenpuls exakt richtig einzustellen. Aber um diese Systeme technologisch in der Praxis anwenden zu können, ist Robustheit ganz entscheidend", sagt Tobias Nöbauer. "Hochpräzise Quanten-Sensoren will man auch in komplizierten Umgebungen einsetzen können, zum Beispiel in einer biologischen Probe, die man nie exakt berechnen kann." Außerdem möchte man für viele Anwendungen, beispielsweise auch für hypothetische Quantencomputer, viele solche Quantensysteme miteinander verschalten. Dies Skalierbarkeit kann man nur erreichen, wenn man alle Fehlerquellen minimiert. Die optimale Kontrolle könnte die Stickstoffatome im Diamant daher zu einem noch heißeren Kandidaten für künftige quantentechnologische Anwendungen machen.

Fakten, Hintergründe, Dossiers
  • Quantencomputer
  • Quantentechnologie
  • Imperial College London
  • Technische Universität Wien
Mehr über TU Wien
  • News

    Ein Sandstrahler auf atomarer Ebene

    Von Halbleitern bis zum Mondgestein: Viele Materialien bearbeitet man mit Ionenstrahlen. An der TU Wien ließ sich nun erklären, wie dieser Prozess von der Rauigkeit der Oberfläche abhängt. Wenn man eine Metalloberfläche von einer Lackschicht befreien möchte, kann man dafür einen Sandstrahle ... mehr

    Einzelne Atome verankern

    Oft heißt es „never change a running system“. Dabei können neue Methoden den alten weit überlegen sein. Während chemische Reaktionen bislang vor allem mit größeren Materialmengen, bestehend aus mehreren hundert Atomen, beschleunigt werden, liefern Einzelatome einen neuen Ansatz für die Kata ... mehr

    Wie sich Ionen ihre Elektronen zurückholen

    Die atomaren Zustände, die in den Labors der TU Wien erzeugt werden, sind sehr außergewöhnlich und spielen für die Forschung eine wichtige Rolle. Es handelt sich um hochgeladene Ionen, also um Atome, die extrem stark elektrisch geladen sind, weil ihnen nicht nur ein Elektron weggenommen wur ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr