18.01.2017 - Technische Universität Berlin

Künstliche Intelligenz erobert die klassischen Naturwissenschaften

Algorithmus lernt aus Chemiedaten und erzeugt neues Verständnis komplexer Moleküle

Ein interdisziplinäres Team von Wissenschaftlern der Technischen Universität Berlin, des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und der Universität Luxemburg hat einen Algorithmus entwickelt, der aus Chemiedaten lernt und ein neues Verständnis komplexer Moleküle erzeugt. Diese Arbeit zeigt das Potenzial von künstlicher Intelligenz oder maschinellem Lernen, den Erkenntnisgewinn in den Naturwissenschaften voranzutreiben.

In den letzten Jahren haben datengetriebene Lern-Algorithmen diverse Disziplinen revolutioniert, darunter die Suche im Internet, Textanalyse und maschinelle Übersetzung sowie Sprach- und Bilderkennung. Aus diesem Grund investieren Technologieunternehmen wie Google, Amazon, Facebook und Microsoft massiv in maschinelles Lernen und künstliche Intelligenz – ein sehr rechenintensives Feld, das unter anderem durch den Einsatz von Grafikkarten zur parallelen Berechnung der Algorithmen große Fortschritte machen konnte. Im Gegensatz dazu sind Lern-Algorithmen, die in den Naturwissenschaften eingesetzt werden, oft noch eher simpel und waren bisher nicht in der Lage, neue physikalische oder chemische Gesetze zu finden, die ihnen nicht explizit vorgegeben waren.

Jetzt haben die Gruppen von Prof. Dr. Klaus-Robert Müller (TU Berlin) und Prof. Dr. Alexandre Tkatchenko (Universität Luxembourg und FHI Berlin) einen Lernalgorithmus entwickelt, der das Verhalten von komplexen Molekülen aus einer großen Datenbank von quantenchemischen Berechnungen analysieren und dadurch Neues entdecken kann. Insbesondere haben die Wissenschaftler ein sogenanntes „deep tensor neural network“ (DTNN) entwickelt, welches automatisch eine Repräsentation für Atominteraktionen in Molekülen findet. Dies ermöglicht chemisch und örtlich aufgelöste Einsichten in quantenmechanische Messgrößen. So konnte das DTNN zum Beispiel eine Gruppe von chemischen Molekülen (sogenannte aromatische Ringe) bezüglich ihrer Stabilität neu klassifizieren sowie Moleküle mit außergewöhnlicher elektronischer Struktur identifizieren. Insgesamt demonstriert diese Arbeit das hohe Potenzial von künstlicher Intelligenz in der Chemie und anderen Naturwissenschaften.

„Die Interpretierbarkeit von statistischen Modellen ist entscheidend, da sie deren Grenzen und Schwächen aufzeigen kann. Bislang wurde das maschinelle Lernen vor allem angewendet, um möglichst genaue Vorhersagen zum Beispiel über die Energien bestimmter chemischer Moleküle zu machen. Allerdings hatte man keine Erkenntnisse über den zugrundeliegenden Mechanismus. Jetzt ist es uns erstmals gelungen, in einer Art ‘Rückwärtsschritt‘ anhand der Vorhersagen, die das maschinelle Lernen über bestimmte Moleküle macht, Erkenntnisse über die zugrundeliegenden naturwissenschaftlichen Phänomene zu gewinnen. Wir können die Ergebnisse interpretieren. Dadurch können wir effektivere und genauere Modelle konstruieren. Interpretierbarkeit war das fehlende Puzzlestück, um maschinelles Lernen zu einem weit verbreiteten Werkzeug in der wissenschaftlichen Forschung zu machen“, sagt Prof. Dr. Klaus-Robert Müller, Leiter des Fachgebiets Maschinelles Lernen an der Technische Universität Berlin.

„Aufgrund der unkonventionellen Kombination aus künstlicher Intelligenz und Quantenmechanik, kann unsere Methode neuartige chemische Erkenntnisse gewinnen, wie statistische Maße für Molekülstabilität und Aromatizität, und somit den Weg für eine breitere Anwendung in der chemischen Forschung bereiten“, sagt Prof. Dr. Alexandre Tkatchenko, Leiter der Gruppe für Theoretische Chemische Physik an der Universität Luxembourg.

Fakten, Hintergründe, Dossiers
  • Naturwissenschaften
  • Universität Luxemburg
  • künstliche Intelligenz
  • Technische Universi…
  • Fritz-Haber-Institut
  • Quantenchemie
  • maschinelles Lernen
Mehr über TU Berlin
  • News

    Salzwasser statt Trinkwasser

    Wasserstoff als Energieträger könnte ein wesentlicher Eckpfeiler einer neuen, CO2-neutralen Energieversorgung werden. Idealerweise wird die dafür notwendige Elektrolyse von Wasser durch erneuerbare Energiequellen wie Sonne, Wasser, Geothermie oder Wind angetrieben. Der heutige Stand der Tec ... mehr

    Synthetisches Pilzgift

    Der Grüne Knollenblätterpilz ist hochgiftig. Ein Teil seiner Giftstoffe könnte aber auch heilbringend sein: Amanitine gelten als mögliche Wirkstoffkomponenten Antikörper-basierter Krebstherapien. Deutsche Wissenschaftler stellen in der Zeitschrift Angewandte Chemie nun eine neue Syntheserou ... mehr

    Neuer KI-Algorithmus bestimmt chemische Struktur anhand der gewünschten Funktion

    Künstliche Intelligenz (KI) und Algorithmen für maschinelles Lernen werden heute routinemäßig verwendet, um unser Kaufverhalten vorherzusagen, Reiserouten vorzuschlagen oder Bilder und Gesichter zu erkennen. In der Forschung etabliert sich KI gerade als ein entscheidendes Instrument zur Unt ... mehr

  • Videos

    Science friction: Adhesion of complex shapes

    We investigate experimentally and numerically adhesion of contacts having complex shape. mehr

    Katalysatoren für die Umwandlung von Methan

    Methan ist Hauptbestandteil von Biogas und Erdgas. Bei der Erdölförderung werden Milliarden Kubikmeter Methan ungenutzt abgefackelt, weil oft wirtschaftliche Transportmöglichkeiten fehlen. Dieses Problem will der Berliner Exzellenzcluster „Unifying Concepts in Catalysis“ (UniCat) mit Hilfe ... mehr

  • q&more Artikel

    Wasser statt Mineralöl

    Grundlage vieler Medikamente sind Wirkstoffe aus chiralen Bausteinen. Für die chemische Herstellung sind teure Edelmetallkatalysatoren notwendig, die sich aufgrund ihrer thermischen Instabilität bei höheren Temperaturen zersetzen und daher nur einmal verwendet werden können. mehr

    David gegen Goliath

    Wo der Laie nur ekligen Schimmel sieht, offenbart sich beim Blick durch das Mikroskop eine ganz besondere Welt der Ästhetik. Ein ­filigranes Netzwerk aus lang gestreckten und verzweigten Pilz­hyphen durchsetzt das Substrat, Lufthyphen erobern den Luftraum und bilden farbige Sporen, mit dene ... mehr

  • Autoren

    Dr.-Ing. Henriette Nowothnick

    Jg. 1980, studierte Chemie an der Technischen Universität Berlin. Sie promovierte 2010 in der Arbeitsgruppe von Prof. R. Schomäcker über die Reaktionsführung der Suzuki-Kupplung in Mikro­emulsionen mit dem Ziel des Katalysator Re-using und der Produktisolierung. 2011 bis 2012 arbeitete sie ... mehr

    Dipl. Ing. Sonja Jost

    Jg. 1980, studierte Wirtschafts­ingenieurwesen / Technische Chemie an der Technischen Universität Berlin. Von 2006 bis 2011 erhielt sie verschiedene Forschungsstipendien im Bereich der homogenen chiralen Katalyse. 2011 bis 2012 war sie Projektleiterin eines Drittmittelprojekts zum Thema „Ka ... mehr

    Prof. Dr. Vera Meyer

    Vera Meyer, geb. 1970, studierte Biotechnologie an der Universität ­Sofia und der Technischen Universität Berlin, wo sie 2001 promovierte. Nach Forschungs- aufenthalten am Imperial College London und der Universität Leiden habilitierte sie 2008 an der Technischen Universität Berlin. Von 200 ... mehr

Mehr über Université du Luxembourg
Mehr über Fritz-Haber-Institut