Meine Merkliste
my.chemie.de  
Login  

Einzelne Atome im Visier

Forscher haben einen Weg gefunden, die NMR-Spektroskopie auf einzelne Atome anzuwenden

26.06.2019

ETH Zürich / Jan Rhensius, Kristian Cujia

Um die Präzession eines Kohlenstoffkerns zu messen, nutzten die ETH-Physiker den Elektronenspin einer benachbarten Gitterfehlstelle als Sensor.

Mit der NMR-Spektroskopie ist es in den letzten Jahrzehnten möglich geworden, die räumliche Struktur von chemischen und biochemischen Moleküle zu erfassen. ETH-Forscher haben nun einen Weg gefunden, wie man dieses Messprinzip auf einzelne Atome anwenden kann.

Die Kernspinresonanz-Spektroskopie – kurz NMR-Spektroskopie – ist eine der wichtigsten physikalisch-chemischen Untersuchungsmethoden. Damit lässt sich beispielsweise die Struktur und die Dynamik von Molekülen präzise bestimmen. Wie wichtig die Methode für die Wissenschaft ist, zeigt sich auch daran, dass die beiden letzten Nobelpreisträger der ETH Zürich, Richard Ernst und Kurt Wüthrich, für Weiterentwicklungen dieser Methode ausgezeichnet wurden.

Die Technik beruht auf der magnetischen Kernresonanz. Dabei macht man sich zunutze, dass gewisse Atomkerne mit einem Magnetfeld wechselwirken. Eine wichtige Grösse ist dabei der Kernspin. Er ist vergleichbar mit der Rotationsachse eines Kinderkreisels. Ähnlich wie wenn ein Kreisel zu taumeln beginnt – Fachleute sprechen von Präzession – beginnen auch Kernspins, die einem Magnetfeld ausgesetzt sind, zu präzessieren. Dabei entsteht ein elektromagnetisches Signal, das von aussen mit einer Induktionsspule gemessen werden kann.

Massiv höhere Auflösung

Forschern aus der Gruppe von Christian Degen, Professor für Festkörperphysik an der ETH Zürich, haben nun einen neuen Ansatz entwickelt, mit dem es erstmals möglich wird, die Präzession eines einzelnen Kernspins direkt zu verfolgen. Zum Vergleich: Bei herkömmlichen NMR-Messungen sind je nach Situation mindestens 1012 bis 1018 Atomkerne notwendig, damit überhaupt ein Messsignal registriert werden kann.

In ihrer Arbeit untersuchten die ETH-Forscher das Verhalten von Kohlenstoff-13-Atomen in Diamanten. Dabei massen sie die Präzession des Kohlenstoffkerns nicht auf herkömmliche Weise, sondern sie nutzten den benachbarten Elektronenspin einer Gitterfehlstelle des Diamanten – einem sogenannten NV-Zentrum – als Sensor. «Wir nutzen also ein zweites Quantensystem, um das Verhalten des ersten Quantensystems zu untersuchen», bringt Kristian Cujia, Doktorand in Degens Gruppe, das Prinzip auf den Punkt. «Damit haben wir ein sehr empfindliches Messsystem geschaffen.»

Grosses Potenzial für künftige Anwendungen

Quantensysteme sind heikle Objekte, da man bei einer Messung immer auch das zu beobachtende System beeinflusst. Deshalb konnten die Forscher das Verhalten des Kohlenstoffspins nicht kontinuierlich verfolgen, da sich sonst die Präzessionsbewegung zu stark verändert hätte. Sie entwickelten deshalb ein spezielles Messverfahren, bei dem der Spin des Kohlenstoffatoms durch eine Serie von kurz aufeinanderfolgenden schwachen Messungen erfasst wird. Dadurch wurde es möglich, den Einfluss der Beobachtung so gering zu halten, dass das System nicht messbar beeinflusst wird und die ursprüngliche Kreisbewegung immer noch erkennbar bleibt.

«Unsere Methode öffnet den Weg für eine bemerkenswerte Weiterentwicklung der NMR-Technologie», hält Degen fest. «Wir sind damit potenziell in der Lage, direkt Spektren von einzelnen Molekülen aufzunehmen und Strukturen auf atomarer Ebene zu analysieren.» Als erstes Beispiel haben die Physiker die dreidimensionale Lage der Kohlenstoffkerne im Diamantgitter mit atomarer Auflösung bestimmt. Die Physiker sehen in dieser Entwicklung viel Potenzial. «Derart detaillierte NMR-Messungen könnten in vielen Bereichen zu völlig neuen Einsichten führen, so wie dies durch die herkömmliche NMR-Spektroskopie in den letzten Jahrzehnten bereits geschehen ist.»

Fakten, Hintergründe, Dossiers
  • Kernspin
  • Quantensysteme
Mehr über ETH Zürich
  • News

    Magnesiumlegierungen beim Korrodieren zusehen

    Erstmals konnten ETH-​Forscher die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatw ... mehr

    Mit Industriemüll Häuser isolieren

    Das ETH-Spinoff FenX verwandelt Industrieabfall in einen porösen Schaum, der sich zur Gebäudeisolation eignet. Im Gegensatz zu anderen nachhaltigen Dämmstoffen ist dieser nicht brennbar und ausserdem günstig herzustellen. Kaum hat einer die Idee geäussert, schon blasen die vier jungen Männe ... mehr

    Deep Learning, vorgefertigt

    Selbstfahrende Autos, automatische Erkennung von Krebszellen, Online-Übersetzer: Deep Learning machts möglich. Das ETH-Spin-off «Mirage Technologies» hat eine Deep-Learning-Plattform entwickelt, die Start-ups und Unternehmen helfen soll, ihre Produkte schneller zu entwickeln und zu optimier ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.