Meine Merkliste
my.chemie.de  
Login  

Selbstorganisierende Moleküle: Zweiseitige Nanoringe

26.07.2019

© UDE/CENIDE

Rasterkraftmikroskopische Aufnahme einzelner Ringe. Der größte hat einen Durchmesser von etwa 500 Nanometern.

Klein wie ein Bakterium sind die winzigen Ringe, die Chemiker des Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) im Labor entstehen lassen. Selbstorganisiert lagern sich einzelne Polymerketten zu den Gebilden zusammen, die so flexibel sind, dass sie sich sogar durch Zellmembranen quetschen können. So könnten sie beizeiten Wirkstoffe ganz gezielt ausliefern. Das Fachmagazin ACS Nano berichtet darüber in seiner aktuellen Ausgabe.

Man nehme etwas Chloroform, einige Milligramm Polymer und mische diese Lösung mit einer Seifenmixtur. Daraus entsteht eine Emulsion, aus der über mehrere Tage langsam Chloroform entweicht. Zurück bleiben kleine Polymer-Nanopartikel, die im Inneren aus kleinen Ringen bestehen. Das Gebilde sieht aus wie ein gestreiftes Osterei: Viele Ringe liegen übereinander, die größten in der Mitte, die kleinsten oben und unten. Um sie zu stabilisieren, werden sie durch chemische Bindungen im Kern vernetzt und anschließend voneinander getrennt.

„Es ist generell schwierig, aus so weicher Materie wie Polymeren Ringe herzustellen“, erklärt Andrea Steinhaus, Doktorandin in der Arbeitsgruppe von Junior-Professor André Gröschel. „Aber wir haben eine gute Möglichkeit gefunden, die zudem leicht skalierbar ist. Das ist im Hinblick auf eine mögliche industrielle Herstellung natürlich immens wichtig.“

Dem Team um Steinhaus ist es zudem erstmals gelungen, Ringe mit zwei verschiedenen Seiten herzustellen, die nach dem römischen Gott mit zwei Gesichtern Janus-Nanoringe genannt werden: Betrachtet man sie wie einen Frühstücksbagel, den man zum Bestreichen aufschneidet, so besteht die obere Hälfte aus einem anderen Polymer als die untere. Dadurch lassen sich unterschiedliche Eigenschaften einstellen, die für die jeweilige Anwendung geeignet sind.

Im nächsten Schritt wollen die Chemiker Scheiben herstellen und verschiedene Füllungsmuster untersuchen. Die grundlegende Frage ist auch hierbei: Über welche Methode lässt sich welche Struktur aufbauen? Denn für viele Anwendungen ist es essenziell, komplexe Nanostrukturen gezielt bilden zu können.

Mehr über Uni Duisburg-Essen
  • News

    Dynamik in Quantenpunkten

    Umgangssprachlich verwendet man den Begriff „Quantensprung“, um eine gewaltige Entwicklung zu beschreiben. Tatsächlich ist es die kleinste Zustandsänderung, die man noch verfolgen kann. Physikern des Sonderforschungsbereichs 1242 an der Universität Duisburg-Essen (UDE) ist es nun gelungen, ... mehr

    Katalysator-Herstellung in einem Schritt

    Ohne Katalysatoren geht nicht viel: Mehr als 80% aller chemisch hergestellten Produkte durchlaufen in ihrer Herstellung einen katalytischen Schritt. Das aktive Material ist meist Platin oder ein anderes Edelmetall, die Herstellung ist entsprechend teuer und erfordert mehrere Vorgänge. Physi ... mehr

    Selbstorganisierende Moleküle: Becher mit Attoliter-Volumen

    Sie sehen aus wie ineinandergesteckte Eierbecher, doch ein Hühnerei ist 100.000-mal so dick wie eines der Miniaturgefäße: Wissenschaftler des Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben Polymere dazu gebracht, sich eigenständig zu winzigen Bechern zu forme ... mehr

  • q&more Artikel

    DIN/ISO-konforme Kalibrierung

    Heutzutage ist die analytische Chemie in ein stark reguliertes Umfeld ein­gebunden und es muss daher gewährleistet sein, dass Methoden eingesetzt werden, die verifizierbar und offiziell autorisiert sind. Wie lässt sich das auf reproduzierbare und eindeutige Weise erreichen? Hier soll diese ... mehr

  • Autoren

    Dr. Ursula Telgheder

    Ursula Telgheder ist Privatdozentin für instrumentelle analytische Chemie an der Universität Duisburg-Essen. Sie lehrt im dortigen Studiengang „Water Science“ und ist Leiterin einer Forschungsgruppe, die sich schwerpunktmäßig mit der Entwicklung von Kopplungssystemen für die Anwendung der I ... mehr

    Prof. Dr. Karl Molt

    Karl Molt ist Professor für instrumentelle Analytik an der Universität Duisburg-Essen. Seine Forschungsschwerpunkte liegen auf dem Gebiet der Chemometrie und des Einsatzes der Molekülspektrometrie in der Prozessanalytik. Er ist Mitglied von Chemometrie-Arbeitskreisen in der Fachgruppe Analy ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.