18.02.2020 - Albert-Ludwigs-Universität Freiburg

Elektronen in schneller Bewegung

Mit neuer Technik Quanteninterferenzen in Echtzeit beobachten

Einem Team um Prof. Dr. Frank Stienkemeier und Dr. Lukas Bruder vom Physikalischen Institut der Universität Freiburg ist es gelungen, ultraschnelle Quanteninterferenzen — also Schwingungsmuster — von Elektronen, die sich in der Atomhülle von Edelgasatomen befinden, in Echtzeit zu beobachten. Sie beobachteten dabei Schwingungen mit einer Periodendauer von nur etwa 150 Attosekunden – eine Attosekunde ist der milliardste Teil einer Milliardstelsekunde. Die Wissenschaftler regten dafür Edelgasatome mit eigens präparierten Laserpulsen an. Anschließend verfolgten sie die Reaktion der Atome mit einer neuen Messmethode, mit der sie quantenmechanische Effekte in Atomen und Molekülen in mit sehr hoher Zeitauflösung untersuchen können.

Zahlreiche chemische Reaktionen, wie zum Beispiel Bindungsbrüche in Molekülen, werden durch Bestrahlung mit Licht ausgelöst. Im ersten Moment nach der Absorption des Lichts verändert sich die Struktur der Elektronen in der Atomhülle, was den weiteren Verlauf der Reaktion maßgeblich beeinflusst. Diese Veränderung läuft sehr schnell ab, die Zeitskalen reichen bis in den Attosekundenbereich. Bisher verwendete Spektroskopietechniken, die sichtbare Laserpulse verwenden, sind nicht schnell genug, um solche Prozesse verfolgen zu können. Deshalb entwickeln Forscher weltweit neuartige Laserquellen und entsprechende Spektroskopietechniken im extrem-ultravioletten Lichtbereich sowie im Röntgenbereich.

Das Team um Stienkemeier erweiterte eine aus dem sichtbaren Spektralbereich bekannte Technik, die so genannte Kohärente Pump-Probe-Spektroskopie, auf den extrem-ultravioletten Bereich. Das ist der spektrale Bereich zwischen Röntgenstrahlung und ultraviolettem Licht. Dafür präparierten die Wissenschaftler am Freie-Elektronen-Laser FERMI in Triest/Italien eine Sequenz, die aus zwei ultrakurzen Laserpulsen im extrem-ultravioletten Bereich besteht. Beide Pulse hatten dabei einen genau bestimmten zeitlichen Abstand sowie eine genau definierte Phasenbeziehung zueinander. Der erste Puls startet den Prozess in der Elektronenhülle, den Pump-Prozess, der zweite Puls dient als Abfrage über den Zustand der Elektronenhülle zu einem späteren Zeitpunkt, was der so genannte Probe-Prozess ist. Durch gezielte Veränderung des zeitlichen Abstands und der Phasenbeziehung konnten die Forschenden Rückschlüsse über die zeitliche Entwicklung in der Elektronenhülle ziehen. „Die größte Herausforderung war, eine möglichst präzise Kontrolle über die Eigenschaften der Pulssequenz zu erlangen und die schwachen Signale messtechnisch zu isolieren“, erklärt Andreas Wituschek, der maßgeblich für die experimentelle Durchführung verantwortlich war.

Die Freiburger Physiker untersuchten unter anderem das Edelgas Argon. Bei diesem ergibt sich durch den Pump-Puls eine spezielle Konfiguration zweier Elektronen innerhalb der Atomhülle: Diese Konfiguration zerfällt, indem ein Elektron das Atom innerhalb einer sehr kurzen Zeit verlässt und schlussendlich das Atom als Ion zurückbleibt. Den Forschenden gelang es zum ersten Mal, den direkten zeitlichen Zerfall der Quanteninterferenzen zu beobachten, während das eine Elektron das Atom verlässt. „Dieses Experiment bereitet den Weg für viele neue Anwendungen in der Untersuchung von atomaren und molekularen Prozessen nach gezielter Anregung mit hochenergetischer Strahlung im extrem-ultravioletten Bereich“, sagt Bruder.

Fakten, Hintergründe, Dossiers
  • Quanteninterferenz
  • Elektronen
  • Echtzeit-Beobachtungen
Mehr über Uni Freiburg
  • News

    Grenzüberschreitung in der Chemie

    Sowohl in der Koordinationschemie als auch in der Metallorganischen Chemie sind Übergangsmetall-Carbonyle eine wichtige und seit Ende des 19. Jahrhunderts bekannte Verbindungsklasse. Hier binden Kohlenstoffmonoxid-Moleküle (CO) an Übergangsmetalle als Zentralatome. Einem Team um Prof. Dr. I ... mehr

    Unschuldig und stark oxidierend

    Die chemische Oxidation, also das gezielte Entfernen von Elektronen aus einem Substrat, repräsentiert eine der wichtigsten Transformationen in der Chemie. Die meisten gängigen Oxidationsmittel weisen jedoch oft Nachteile wie unerwünschte Nebenreaktionen auf. Dem Chemiker Marcel Schorpp und ... mehr

    Programmieren mit dem Lichtschalter

    In der Entwicklung autonomer Systeme und Materialien gewinnen selbstorganisierende molekulare Strukturen, die durch chemische Reaktionsnetzwerke gesteuert sind, zunehmend an Bedeutung. Jedoch fehlt es bisher an einfachen externen Mechanismen, die sicherstellen, dass die Komponenten dieser R ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr