01.07.2020 - Ruhr-Universität Bochum (RUB)

Der doppelte Mantel um Moleküle in Wasser

Die Einbettung von hydrophoben Molekülen in Wasser sieht im Detail ganz anders aus als bisher angenommen

Wasserabweisende Moleküle sind im Wasser von einer Ummantelung aus zwei verschiedenen Schichten umgeben: Die innere Lage bildet ein zweidimensionales Netzwerk. Darüber liegt eine Übergangsschicht, die eine stärkere Bindung zum umgebenden Wasser hat. Bisher hatte man angenommen, dass in der innersten Schicht um solche wasserabweisenden Moleküle tetraedrische, eisähnliche Formationen von Wassermolekülen überwiegen. Das Gegenteil ist der Fall.

Die neuen Erkenntnisse hat das Team von Prof. Dr. Martina Havenith, Leiterin des Bochumer Lehrstuhls für Physikalische Chemie II und Sprecherin des Exzellenzclusters Ruhr Explores Solvation an der Ruhr-Universität Bochum (RUB) in der Zeitschrift The Journal of Physical Chemistry Letters am 18. Juni 2020 veröffentlicht.

Einblicke mit Thz-Spektroskopie und Simulationen

In der Arbeit untersuchten die Forscher das Wasserstoffbrückennetzwerk rund um den hydrophoben gelösten Alkohol tert-Butanol. Alkohole dienen der Forschung als einfaches Modell für wasserabweisende Moleküle. Das Team kombinierte Ergebnisse der Terahertz (THz)-Spektroskopie und von Simulationen.

Bei der THz-Spektroskopie schicken Forscher Strahlung im THz-Bereich in die Probe, welche einen Teil der Strahlung absorbiert. Das Absorptionsmuster, das die Chemiker in Form eines Spektrums darstellen, ist wie ein Fingerabdruck des Wassernetzwerks. 

Eine dünne Schicht

So entstand ein detailliertes Bild der das Molekül umgebenden Wasserschichten. „Wir nennen die innerste Lage ‚HB-wrap’, wobei HB für water hydrogen bond, also Wasserstoffbrückenbindung steht“, erläutert Martina Havenith. Die darüber liegende Schicht wird als „HB-hydration2bulk“ bezeichnet, also die Verbindung zum restlichen Wasser („bulk“). Beide Lagen der Ummantelung zusammen sind teilweise nur so dick wie eine einzelne Schicht Wassermoleküle. „Es kann vorkommen, dass ein Wassermolekül beiden Schichten angehört“, so Havenith.

Innere Schicht bleibt länger stabil

Bei Temperaturerhöhung schmilzt zuerst die äußere Schicht, die innere hält sich länger um das Molekül. „Das liegt daran, dass die innere Schicht durch die wasserabweisenden Eigenschaften des umschlossenen Moleküls weniger Bewegungsfreiheit hat“, erklärt die Forscherin. „Die einzelnen Wassermoleküle müssen sich stets davon abwenden, daher bilden sie nur ein zweidimensionales, loses Netz.“ Die Moleküle darüber haben mehr Freiheiten und daher auch mehr Verbindungsmöglichkeiten untereinander, die Forscher sprechen von größerer Entropie.

Diese Art der Wechselwirkung ist unter anderem bedeutend für Faltungsprozesse von Proteinen und die biomolekulare Erkennung zwischen einem Medikament und seinem Targetmolekül. Ein Verständnis der Rolle des Wassers spielt dabei eine zentrale Rolle.

Fakten, Hintergründe, Dossiers
  • Wasserstoffbrücken
Mehr über Ruhr-Universität Bochum
  • News

    Algen als lebende Biokatalysatoren für eine grüne Industrie

    Viele Substanzen, die wir täglich nutzen, wirken nur in der richtigen 3D-Struktur. Natürliche Enzyme könnten sie umweltfreundlich herstellen – wenn sie nicht einen bisher nur teuer zu erzeugenden Hilfsstoff bräuchten. Ein Forschungsteam der Ruhr-Universität Bochum (RUB) hat in einzelligen G ... mehr

    Neue Chemie für ultradünne Gassensoren

    Die Anwendung von Zinkoxidschichten in der Industrie ist vielfältig und erstreckt sich vom Schutz verderblicher Waren vor Luft bis zur Detektion von giftigen Stickoxiden. Solche Schichten können mit Hilfe der Atomlagenabscheidung (engl. Atomic layer deposition, kurz ALD) hergestellt werden, ... mehr

    Eine außergewöhnliche Kobaltverbindung

    Auf der Suche nach kleinen, aber stabilen Kobaltverbindungen hat ein internationales Team einen für die Materialforschung spannenden Komplex entdeckt, wie es ihn seit fast 50 Jahren nicht mehr gab. Eine neuartige, sehr vielseitige Kobaltverbindung hat ein Forschungsteam der Ruhr-Universität ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr