17.07.2020 - Technische Universität Wien

Wie man Gold beibringt, rechts und links zu unterscheiden

Chemikerin der TU Wien mit einem Elise-Richter-Stipendium ausgezeichnet: Sie forscht an Katalyse mit winzigen Goldclustern

Winzig kleine Goldpartikel, die nur aus wenigen Atomen bestehen, kann man als Katalysatoren für wichtige chemische Reaktionen verwenden. Noelia Barrabés vom Institut für Materialchemie der TU Wien forscht seit Jahren an neuen Methoden, solche winzigen Goldcluster anzupassen und genau zu kontrollieren. Nun wurde sie mit einem Elise-Richter-Stipendium ausgezeichnet.

Mit diesem Stipendium wird sie Goldcluster nun verwenden, um eine besonders schwierige chemische Aufgabe zu lösen: Von manchen Molekülen gibt es auch eine Spiegelbild-Variante, bei der rechts und links vertauscht ist. Normalerweise ist es extrem schwierig, nur eine dieser beiden Varianten herzustellen. Speziell behandelte Goldcluster sollen nun dabei helfen.

Perfekte Kontrolle über Goldpartikel

Dass Gold als Katalysator genutzt werden kann, um wichtige chemische Reaktionen in Gang zu setzen, ist schon länger bekannt. Besonders effizient lässt sich Gold als Katalysator verwenden, wenn man es in Form winziger Partikel auf einer Oberfläche fixiert, wie kürzlich im Fachjournal ACS Catalysis demonstriert. Eine wichtige Rolle spielt dabei die Größe der Goldcluster. „Normalerweise hat man es mit Goldclustern unterschiedlicher Größe zu tun, die auch unterschiedliche Eigenschaften haben“, erklärt Noelia Barrabés. „Bei uns ist das anders: Wir haben Methoden entwickelt, die Größe der Goldcluster exakt festzulegen. Alle Cluster bestehen aus genau der gleichen Zahl von Atomen.“

An diesen Goldclustern können sich verschiedene Moleküle anlagern – sie bezeichnet man als Liganden. „Diese Liganden haben einen ganz entscheidenden Einfluss auf das chemische Verhalten der Goldcluster“, sagt Noelia Barrabés. „Wir mussten daher auch Methoden entwickeln, die Liganden genau zu kontrollieren.“ So kann man beispielsweise die Goldcluster zunächst in einer flüssigen Umgebung herstellen, dann auf einer festen Oberfläche fixieren und anschließend ihre Liganden gezielt austauschen. Diese Technik wurde vor kurzem im Journal Nanoscale publiziert und dort auch am Back Cover des Magazins vorgestellt.

Das Molekül und sein Spiegelbild

Wie Noelia Barrabés kürzlich zeigen konnte, eröffnet das eine ganz besonders interessante Möglichkeit: Man kann nämlich sogenannte „chirale Liganden“ verwenden, die ebenfalls in Bild- und Spiegelbild-Variante existieren.

„Wenn man ein Molekül synthetisiert, von dem es auch eine Spiegelbild-Version gibt, dann erzeugt man meist beide Varianten gleichzeitig“, erklärt Prof. Günther Rupprechter, Vorstand des Instituts für Materialchemie. „Schließlich bestehen beide Moleküle genau aus denselben Atomen und haben den gleichen prinzipiellen Aufbau.

Noelia Barrabés möchte nun im Rahmen ihres Elise-Richter-Stipendiums zeigen, dass es mit speziellen Liganden auf den Goldclustern möglich ist, selektiv nur eine der beiden Varianten herzustellen.“ Der spezielle Fokus liegt darauf, das mit Goldclustern durchzuführen, die auf einer Oberfläche fixiert sind – ein derzeit noch kaum angewandtes und wenig untersuchtes Verfahren, das jedoch bei erfolgreicher Umsetzung große Vorteile gegenüber den herkömmlichen Methoden hätte.  

Speziell für Anwendungen in der Medizin kann der Unterschied zwischen einem Molekül und seinem Spiegelbild eine wichtige Rolle spielen: „Wir wissen, dass unser Körper auf bestimmte Moleküle ganz anders reagiert als auf die gespiegelte Version. Im Extremfall kann die eine Variante heilen und die andere krank machen“, erklärt Noelia Barrabés.

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Der Quantenkühlschrank

    Auf den ersten Blick haben Wärme und Kälte nicht viel mit Quantenphysik zu tun. Ein einzelnes Atom ist weder heiß noch kalt. Temperatur lässt sich nur für Objekte definieren, die aus vielen Teilchen bestehen. Doch an der TU Wien konnte man nun, in Zusammenarbeit mit der Freien Universität B ... mehr

    Hochtemperatur-Supraleitung verstehen - mit ultratiefen Temperaturen

    Bei tiefen Temperaturen verlieren bestimmte Materialien ihren elektrischen Widerstand und können Strom völlig verlustfrei leiten – dieses Phänomen, die Supraleitung, ist zwar schon seit 1911 bekannt, doch bis heute ist es nicht vollständig verstanden. Und das ist schade, denn ein Material, ... mehr

    Das Bitumen-Puzzle

    Obwohl die Geschichte des Bitumens bis ins dritte Jahrtausend v. Chr. zurückreicht, ist über seine Oberflächenstruktur nur wenig bekannt. Forschende der TU Wien klären die Beschaffenheit der Bitumenoberfläche nun mit physikochemischen Analysen auf. Während in der Vergangenheit bereits Raste ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr