16.09.2020 - Max-Planck-Institut für Chemie

Auf dem Weg zum Stromtransport der Zukunft

Supraleitung in Schwefelwasserstoff

Supraleitende Kabel könnten Strom verlustfrei transportieren. So müsste weniger Strom erzeugt, Kosten und Treibhausgase könnten eingespart werden. Eine aufwendige Kühlung steht dem entgegen, denn bisherige Supraleiter verlieren ihren elektrischen Widerstand erst bei extrem niedrigen Temperaturen. In der Zeitschrift Angewandte Chemie stellen Wissenschaftler jetzt neue Erkenntnisse über Schwefelwasserstoff der Zusammensetzung H3S und sein Deuterium-Analogon D3S vor, die unter Druck bereits bei −77 bzw. −107 °C supraleitend werden – eine vergleichsweise hohe Temperatur.

Das gilt auch im Vergleich zu den bisherigen Spitzenreitern, kupferhaltigen Keramiken mit Sprungtemperaturen von ca. −135 °C. Trotz vieler Forschungsarbeiten über das System Schwefel/Wasserstoff sind wichtige Fragen noch unbeantwortet. Vor allem wurde supraleitender Schwefelwasserstoff bisher aus „normalem“ Schwefelwasserstoff H2S hergestellt, indem er mit Drücken um 150 GPa (1,5 Mio. bar) in einen metallartigen Zustand mit der Zusammensetzung H3S gebracht wird. Solche Proben sind unausweichlich mit Wasserstoff-armen Nebenprodukten kontaminiert, die die Ergebnisse verfälschen können. Um dies zu vermeiden, stellten die Forscher um Vasily S. Minkov jetzt stöchiometrisches H3S her, indem sie elementaren Schwefel mit einem Überschuss Wasserstoff (H2) direkt unter Druck per Laser erhitzten. Zusätzlich stellten sie Proben unter Verwendung des Wasserstoffisotops Deuterium (D2) her.

Ursache für die vergleichsweise hohe Sprungtemperatur von H3S sind dessen Wasserstoffatome, die im Kristallgitter besonders hochfrequent schwingen. Da Deuteriumatome schwerer sind als Wasserstoffatome, schwingen sie etwas langsamer und es waren niedrigere Sprungtemperaturen für D3S zu erwarten. Mittels Analysen konnte das Team vom Max-Planck Institut für Chemie (Mainz), der University of Chicago (USA) und dem Soreq Nuclear Research Center (Yavne, Israel) die Phasendiagramme von H3S und D3S in Abhängigkeit von Druck und Temperatur verfeinern und deren supraleitende Eigenschaften genauer beleuchten.

Bei 111 bis 132 GPa und ca. 400 bis 700 °C ergaben die Synthesen nichtmetallische, elektrisch isolierende Strukturen (Cccm-Phasen), die weder durch Kühlen noch durch höheren Druck in Metall umwandeln. Sie enthalten molekulare H2- (bzw. D2-)Einheiten in der Kristallstruktur, die auch der Grund für die Drosselung der Supraleitung sind. Die erwünschten supraleitenden Strukturen, kubische Im-3m-Phasen,a entstanden bei Synthesen oberhalb 150 GPa bei ca. 1200 bis 1700 °C. Sie sind metallisch, glänzen und zeigen geringen elektrischen Widerstand. Proben von Im-3m-H3S zeigten bei 148 bis 170 GPa Sprungtemperaturen um −77 °C. Die D3S-Analoga zeigten eine Sprungtemperatur, die mit etwa −107 °C bei 157 GPa deutlich höher lag als erwartet. Senken des Drucks führte reversibel zu abruptem Abfall der Sprungtemperatur und Verlust der metallischen Eigenschaften. Ursache sind rhombische Verzerrungen der Kristallstruktur (R3m-Phase). Erhitzen unter Druck wandelte die R3m irreversibel in eine Cccm-Phase um. R3m ist offenbar eine metastabile Zwischenform, die nur bei Dekompression auftritt.

Die Forscher hoffen, zukünftig andere wasserstoffreiche Verbindungen zu finden, die sich auch ohne hohe Drücke in Metalle umwandeln lassen und bei Raumtemperatur supraleitend werden.

Fakten, Hintergründe, Dossiers
Mehr über MPI für Chemie
  • News

    Präzise Schadstoffermittlung aus dem All

    Stickoxide (NO und NO2) tragen wesentlich zur Luftverschmutzung bei. Um die Luftqualität möglichst gut vorherzusagen und Strategien zur Reduktion der Verschmutzung zu entwickeln, sind präzise Emissionsdaten notwendig. Dazu helfen unter anderem tägliche Satellitenmessungen. Das Messgerät bli ... mehr

    Renommierter Preis für den Supraleitungsforscher Mikhail Eremets

    Die American Physical Society (APS) verleiht Mikhail Eremets den James C. McGroddy-Preis für neue Materialien des Jahres 2020. Wie die Gesellschaft kürzlich ankündigte, erhält der Forscher des Max-Planck-Instituts für Chemie die Auszeichnung für seine „wegweisenden Untersuchungen von Hydrid ... mehr

    Ein Sprung zur Supraleitung bei Raumtemperatur

    Weniger Kraftwerke, weniger Treibhausgase und niedrigere Kosten: Wenn Wissenschaftler Supraleitung bei Raumtemperaturen entdecken würden, könnten enorme Strommengen eingespart werden. Denn Supraleiter transportieren Strom ohne Verluste. Ein Team des Max-Planck-Instituts für Chemie in Mainz ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Chemie

    Vorläufer unseres Instituts ist das Kaiser-Wilhelm-Institut für Chemie, das 1912 in Berlin-Dahlem eröffnet wurde. Es wurde 1949 in die Max-Planck-Gesellschaft übernommen und als Max-Planck-Institut für Chemie in Mainz neu aufgebaut. Zu Ehren Otto-Hahns trägt das Institut den Zweitnamen Otto ... mehr

Mehr über University of Chicago
Mehr über Angewandte Chemie
  • News

    Kaskaden mit Kohlenstoffdioxid

    Kohlenstoffdioxid (CO2) ist nicht nur ein unerwünschtes Treibhausgas, sondern auch eine interessante Rohstoffquelle, deren Recycling wertvoll und nachhaltig sein könnte. Ein spanisches Forschungsteam stellt in der Zeitschrift Angewandte Chemie einen neuartigen katalytischen Ansatz zur Umwan ... mehr

    Strukturfarben aus Cellulose-Polymeren

    Klare Oberflächen erscheinen farbig, wenn winzige, regelmäßige Strukturelemente darin Licht reflektieren. Forscher haben jetzt eine Methode entwickelt, um derartige Strukturfarben aus einem cellulosebasierten Polymer herzustellen. Dafür verwendeten sie beschichtete Tröpfchen, die sich in an ... mehr

    Acetylenabscheidung mit außergewöhnlicher Selektivität und Robustheit

    Ethylen ist für die chemische Industrie ein wichtiger Ausgangsstoff, enthält aber oft Spuren von Acetylen als Verunreinigung, die vollständig entfernt werden müssen. In der Zeitschrift Angewandte Chemie beschreiben Forscher eine robuste und regenerierbare metallorganische Gerüstverbindung, ... mehr