30.09.2020 - Friedrich-Schiller-Universität Jena

Neuer Stromspeicher ist effizienter und hitzebeständiger

Chemiker entwickeln neue Polymerelektrolyte für Redox-Flow-Batterien

Der Anteil erneuerbarer Energien steigt hierzulande stetig. Zu Beginn des Jahres 2020 konnte er erstmals mehr als die Hälfte des in Deutschland verbrauchten Stroms abdecken. Doch je wichtiger regenerative Methoden der Energiegewinnung werden, umso drängender ist die Notwendigkeit, den auf diese Weise erzeugten Strom zu speichern. Grüne Energie könnte so auch genutzt werden, wenn keine Sonne auf Solarpanels scheint oder kein Luftstrom Windkraftanlagen antreibt. Geeignete Stromspeicher sind dafür unverzichtbar. Forscher der Friedrich-Schiller-Universität Jena haben nun neue vielversprechende Poly­mer­elektrolyte für Redox-Flow-Batterien entwickelt, welche flexibel einsetzbar, leistungsfähig und umweltfreundlich sind.

Großes Potenzial von Redox-Flow-Batterien

Das neue Material der Jenaer Chemiker wird in sogenannten Redox-Flow-Batterien eingesetzt. „Bei diesem Typ werden die stromspeichernden Komponenten in einem Lösungsmittel gelöst und können dadurch dezentral gelagert werden, was die beliebige Ska­lierung der Batterie von wenigen Millilitern bis etlichen Kubikmetern einer solchen Elektrolyt­lösung erlaubt“, sagt Prof. Dr. Ulrich S. Schubert vom Center for Energy and Environmental Chemistry Jena (CEEC Jena) der Friedrich-Schiller-Universität. Aufgrund dieser Flexibilität haben Redox-Flow-Batterien generell großes Potenzial, sich in der Zukunft als wichtiger Strom­speicher zu etablieren.

Bisher allerdings wiesen sie zwei Schwächen auf, die eine breite Anwendung verhinderte: Zum einen kamen als Elektrolyt häufig beispielsweise in Schwefelsäure gelöste umwelt­ge­fährdende und giftige Schwermetallsalze wie Vanadium zum Einsatz. Zum anderen funktio­nierten sie nur bis zu einer Umgebungstemperatur von maximal 40 Grad Celsius und benötig­ten deshalb ein aufwendiges Kühlungssystem. Mit Hilfe des neuen Materials könnten diese beiden Probleme gelöst werden.

Sauberer, hitzebeständiger, effizienter

„Wir haben als Elektrolyt ein neuartiges Polymer entworfen, das zum einen wasserlöslich ist und somit überhaupt als Elektrolyt infrage kommt, und das zum anderen Eisen enthält, was ihm die Fähigkeit verleiht, elektrischen Strom zu speichern“, erklärt Schubert. „Gleichzeitig erlaubt das Polymer eine deutlich höhere Umgebungstemperatur von bis zu 60 Grad Celsius – der zusätzliche Aufwand eines sensiblen Temperaturmanagements entfällt somit.“ Da­rüber hinaus stellten die Jenaer Forscherinnen und Forscher während ihrer Versuche mit dem neuen System fest, dass es auch effizienter als seine Vorgänger funktioniert.

Somit kann Strom in einer ungefährlichen Lösung auf Wasserbasis gespeichert, in Tanks zwi­schengelagert und ohne nennenswerte Verluste und zusätzlichen Aufwand am nächsten Tag wieder aus der Batterie genutzt werden. Systeme dieser Art können außerdem ebenso in wär­me­ren Regionen, etwa in Afrika, Indien oder Brasilien, zum Einsatz kommen. „Durch die Ver­besserung des stromspeichernden Mediums sehen wir die Redox-Flow-Batterie wieder in einer guten Position, um einen wichtigen Beitrag als Stromspeicher der Zukunft zu leisten“, sagt der Jenaer Chemiker. „Und einmal mehr zeigt unsere Entwicklung die große Bedeutung neuartiger Polymere für die Entwicklung innovativer Speichermethoden.“

Fakten, Hintergründe, Dossiers
  • Energiespeicher
  • Strom
  • Redox-Flow-Batterien
Mehr über Uni Jena
  • News

    Intelligente Nanomaterialien für Photonik

    In Kombination mit Lichtwellenleitern ermöglichen 2D-Materialien mit herausragenden optischen Eigenschaften ganz neue Anwendungen im Bereich der Sensorik, der nichtlinearen Optik und der Quantenelektronik. Allerdings war es bisher sehr aufwendig, die beiden Komponenten zusammenzubringen. De ... mehr

    Neuartiger Ansatz 
zur Speicherung von Sonnenenergie

    Die Energie aus der Sonne so effizient zu nutzen und in chemische Energie umzuwandeln wie es die Natur macht, könnte den weltweiten CO2-Ausstoß drastisch verringern. Ein Forschungsteam des Leibniz-Instituts für Photonische Technologien und der Universität Jena ist dieser Vision nun einen Sc ... mehr

    Tellur macht den Unterschied

    Das Periodensystem kennt 118 chemische Elemente. In unserem Alltag stehen jedoch nur wenige davon im Vordergrund, etwa Wasserstoff, Kohlenstoff, Stickstoff, Sauerstoff und Silizium. Richtig spannend wird es aus chemischer Sicht aber, wenn weniger bekannte Elemente ins Spiel kommen. So hat e ... mehr

  • q&more Artikel

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

  • Autoren

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr