23.11.2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Biochemische Zufallszahl

Riesengrosse echte Zufallszahl mittels DNA-​Synthese generiert - Es ist das erste Mal, dass eine Zahl in dieser Grössenordnung mit chemisch-​biologischen Mitteln erstellt worden ist

Bei der Verschlüsselung von Information sowie für Spielautomaten werden echte Zufallszahlen benötigt. Das sind Zahlen, die tatsächlich zufällig sind und von niemandem erraten werden können, auch nicht von Personen, welche detaillierte Kenntnisse haben von der Methode, mit der sie generiert wurden.

In der Regel werden dazu physikalische Methoden verwendet. Wegen feinsten hochfrequenten Elektronenbewegungen ist zum Beispiel der elektrische Widerstand eines Drahtes nicht konstant, sondern er fluktuiert geringfügig auf nichtvorhersagbare Weise. Messungen dieses Hintergrundrauschens können daher zur Erstellung von echten Zufallszahlen verwendet werden.

Forschende unter der Leitung von Robert Grass, Professor am Institut für Chemie-​ und Bioingenieurwissenschaften, haben nun erstmals eine nicht-​physikalische, sondern eine chemisch-​biologische Methode zur Erstellung solcher Zahlen beschrieben, die in der Praxis auch funktioniert. Frühere Ideen anderer Wissenschaftler, Zufallszahlen mit chemischen Mitteln zu erstellen, waren eher theoretischer Natur.

DNA-​Synthese mit zufälligen Bausteinen

Die ETH-​Forschenden verwenden dazu die Synthese von DNA-​Molekülen, eine in der biologischen Forschung etablierte und seit Jahren oft verwendete Methode. Traditionell wird diese verwendet, um eine genau definierte DNA-​Sequenz herzustellen. Hier produzierten die Forschenden jedoch DNA-​Moleküle aus 64 Bausteinen, bei dem an jeder der 64 Positionen zufällig einer der vier DNA-​Bausteine A, C, G oder T zu liegen kam. Sie erreichten dies, indem bei jedem Syntheseschritt statt nur ein Baustein eine Mischung der vier Bausteine verwendet wurde.

Mit einer verhältnismässig einfachen Synthese liess sich damit eine Mischung von geschätzt drei Billiarden solcher Moleküle herstellen. Anschliessend bestimmten die Wissenschaftler mit einer leistungsfähigen DNA-​Sequenziermethode die A-​C-G-T-Bausteinabfolge von 5 Millionen dieser Moleküle. Das waren 12 Megabytes an Daten, welche die Forschenden in einer Abfolge von Nullen und Einsen auf einem Computer abspeicherten.

Grosse Menge an Zufälligkeit auf kleinem Raum

Komplett gleich verteilt waren die vier Bausteine A, C, G und T zwar nicht, wie sich in einer Analyse herausstellte: Feinheiten der Natur oder der Synthesemethode sorgten dafür, dass die Bausteine G und T etwas häufiger in die Moleküle eingebaut wurden als A und C. Die Wissenschaftler konnten dieses Ungleichgewicht jedoch mit einem Algorithmus korrigieren und somit perfekte zufällige Zahlen generieren.

Letztlich ist es ETH-​Professor Grass mit der Arbeit vor allem darum gegangen aufzuzeigen, dass sich mit der in der Chemie existierenden Zufälligkeiten perfekte Zufallszahlen generieren lassen. Eine direkte Anwendung stand zunächst nicht im Vordergrund. «Gegenüber anderen Methoden hat unsere jedoch den Vorteil, dass man mittels DNA-​Synthese eine grosse Menge an Zufälligkeit generieren und auf einem extrem kleinen Raum, in einem kleinen Reagenzglas, aufbewahren kann», sagt Grass. «Die Information auslesen und in digitale Form uminterpretieren kann man auch später. Mit den bisherigen Methoden ist das nicht möglich.»

Fakten, Hintergründe, Dossiers
  • DNA-Synthese
Mehr über ETH Zürich
  • News

    Wie fliegen wir künftig klimaneutral?

    Eine klimaneutrale Luftfahrt ist möglich. Doch auch in Zukunft dürften Flugzeuge mit fossilen Treibstoffen betrieben werden. Das ausgestossene CO2 muss konsequent im Untergrund gespeichert werden. Es ist politisch ausgemacht und aus Klimaschutzgründen notwendig, dass unsere ganze Volkswirts ... mehr

    Klimapositive Geschäftsideen in die Realität umsetzen

    An der ETH Zürich wagen sich zusehends mehr Forschende mit ihren Erkenntnissen aus dem Labor in die Praxis. Mit ihren Firmen wollen die Gründer direkt dazu beizutragen, den Anstieg des Kohlendioxid-​Gehalts in der Atmosphäre zu drosseln. Die «eindeutige Erwärmung des Klimasystems» ist im fü ... mehr

    Wirkungsweise wichtiger Katalysatoren entschlüsselt

    Die Spaltung von Wasser in Wasserstoff und Sauerstoff ist eine wichtige chemische Reaktion, auch im Hinblick auf die vermehrte Nutzung von Wasserstoff als Energieträger in nachhaltiger Mobilität. Ein internationales Forscherteam hat nun die Wirkungsweise eines Katalysators entschlüsselt. Wa ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr