Das Bitumen-Puzzle

Methodenmix liefert neue Infos

07.07.2021 - Österreich

Obwohl die Geschichte des Bitumens bis ins dritte Jahrtausend v. Chr. zurückreicht, ist über seine Oberflächenstruktur nur wenig bekannt. Forschende der TU Wien klären die Beschaffenheit der Bitumenoberfläche nun mit physikochemischen Analysen auf.

Technische Universität Wien

Bitumenoberfläche dargestellt mit verschiedenen mikroskopischen Techniken: AFM (Topographiebild) und AFM-IR (chemische Verteilung – IR Absorption bei 1262 cm-1).

Während in der Vergangenheit bereits Rasterkraft- und Rasterelektronenmikroskopie Aufschluss über die Morphologie von Bitumenoberflächen lieferten, war lange Zeit nicht bekannt, ob Oberflächen- und chemische Beschaffenheit miteinander korrelieren. Die chemische Zusammensetzung der Oberfläche ist jedoch von besonderem Interesse, da dort Oxidationsprozesse ablaufen, ausgelöst durch in der Luft enthaltene sauerstoffhaltige Moleküle wie Ozon, Stickoxide oder Hydroxyl-Radikale. Der Oxidationsprozess beschleunigt die Alterung des Materials – das Bitumen wird porös und es bilden sich Schäden aus.

Die Materialchemiker Dr. Ayse Koyun und Prof. Hinrich Grothe von der TU Wien untersuchten daher die Bitumenoberfläche mit verschiedenen physikochemischen Analysemethoden und verglichen die jeweiligen Ergebnisse miteinander. Die Forschenden publizierten die Daten am 29. Juni in der Fachzeitschrift Scientific Reports.

Ein vielfältiges Material

Bitumen wird aus Erdöl gewonnen und primär für die Herstellung von Asphalt verwendet. Seine Konsistenz hängt maßgeblich von der Temperatur ab – bei heißen Temperaturen ist es zähflüssig und größere chemische Verbindungen wie Aliphate, Erdölharze und Asphaltene bewegen sich frei in der Masse. Kühlt das Bitumen jedoch ab, erstarrt das Material und die einzelnen Moleküle ordnen sich charakteristisch an. Analysen konnten bereits zeigen, dass sich sogenannte Kern-Schale-Partikel an der Oberfläche ausbilden. Das sind Komposite, die aus mindestens zwei verschiedenen Komponenten bestehen.

Da Asphalt und Bitumen im Straßenbau wie auch für Abdichtungsarbeiten eingesetzt werden, ist eine möglichst lange Produktlebensdauer erstrebenswert. Um die Alterung des Materials zu verlangsamen, gilt es Reaktionen ausgelöst von reaktiven Gasen, Licht und Wärme zu minimieren. „Wenn wir das Oxidationsverhalten von Bitumen besser verstehen, können wir nach geeigneten Maßnahmen suchen, um die atmosphärische Alterung zu verhindern. Die Lebensdauer eines Bitumen-Produkts kann so um viele Jahre verlängert werden, was Energie und materielle Ressourcen spart“, erklärt Koyun. In einer in Colloids and Surfaces A: Physicochemical and Engineering Aspects publizierten Studie konnte sie bereits zeigen, wie sich die chemische Zusammensetzung von Bitumen auf seinen Alterungsprozess auswirkt.

Methodenmix liefert neue Infos

In enger Zusammenarbeit mit der Harvard University, der Bruker Nano-Surfaces Division sowie der IONTOF GmbH untersuchte Ayse Koyun, Erstautorin der Studie, die Bitumenoberfläche mit drei verschiedenen Methoden: nanoskalige Infrarotspektroskopie auf Basis photothermischer Expansion (AFM-IR), Flugzeit-Sekundärionen-Massenspektrometrie (ToF-SIMS) und Fluoreszenzmikroskopie. In Kombination liefern diese Methoden wertvolle Einblicke in die mehrphasige Natur der Bitumenoberfläche. „Die Auflösung herkömmlicher Messmethoden, die zur Untersuchung der Oberflächenbeschaffenheit eingesetzt werden, sind für die chemische Charakterisierung zu gering. Einzelne Domänen der Oberfläche lassen sich so nicht bestimmen“, erklärt Koyun. „Durch die Kombination verschiedener physikochemischer Methoden gelingt es uns jedoch, die Struktur bis auf zehn Nanometer genau abzubilden.“ Das Ergebnis: Die Oberfläche ist heterogen. Die Ergebnisse mikroskopischer und spektroskopischer Methoden korrelieren und lassen sich schlüssig interpretieren.

Ein Gesamtbild entsteht

„Bitumen war für uns Materialchemiker_innen lange Zeit wie ein ungelöstes Puzzle“, zieht Hinrich Grothe, Leiter der Forschungsgruppe Physikalische Chemie der Atmosphäre, seinen Vergleich. „Wir kennen viele Details, die sich bislang aber nicht zu einem Gesamtbild haben zusammenfügen lassen. Die Kombination mehrerer physikochemischer Methoden, wie wir sie angewendet haben, konnte uns aber schlussendlich zeigen, wie sich die einzelnen Molekülverbünde im Bitumen verteilen.“ „So konnten wir das Puzzle lösen und das Wissen über Bitumen vervollständigen“, ergänzt Ayse Koyun, die im Rahmen eines Marshall-Stipendiums und mit Unterstützung der TU Wien zwei Forschungsaufenthalte an der Harvard University absolviert.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren