12.01.2022 - Ruhr-Universität Bochum

Katalysatoroberfläche mit atomarer Auflösung analysiert

Partikel während des Katalyseprozesses beobachtet

So detailliert sind Katalysatoroberflächen selten zuvor abgebildet worden. Dabei kann jedes einzelne Atom entscheidend für die katalytische Aktivität sein.

Mit atomarer Auflösung hat ein deutsch-chinesisches Forschungsteam die dreidimensionale Struktur der Oberfläche von Katalysator-Nanopartikeln sichtbar gemacht. Diese spielt eine entscheidende Rolle für die Aktivität und Stabilität der Partikel. Die detaillierten Einblicke gelangen mit einer Kombination aus Atomsondentomografie, Spektroskopie und Elektronenmikroskopie. Nanopartikel-Katalysatoren können zum Beispiel bei der Produktion von Wasserstoff für die chemische Industrie zum Einsatz kommen. Um die Leistung künftiger Katalysatoren zu optimieren, ist es unabdingbar, den Einfluss der dreidimensionalen Struktur zu verstehen.

Für die Arbeiten kooperierten Forschende der Ruhr-Universität Bochum, der Universität Duisburg-Essen und des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr im Rahmen des Sonderforschungsbereichs „Heterogene Oxidationskatalyse in der Flüssigphase“.

An der RUB arbeitete ein Team um Weikai Xiang und Prof. Dr. Tong Li aus dem Bereich Atomic-scale Characterisation zusammen mit dem Lehrstuhl für Elektrochemie und Nanoskalige Materialien sowie dem Lehrstuhl für Technische Chemie. Außerdem waren Institute im chinesischen Shanghai und britischen Didcot beteiligt. Das Team beschreibt die Arbeiten in der Zeitschrift Nature Communications, online veröffentlicht am 10. Januar 2022.

Partikel während des Katalyseprozesses beobachtet

Die Forschenden untersuchten zwei verschiedene Arten von Nanopartikeln aus Cobalt-Eisenoxid, die kleiner als zehn Nanometer waren. Sie analysierten die Partikel während der Katalyse der sogenannten Oxygen Evolution Reaction. Dabei handelt es sich um eine Teilreaktion, die während der Wasserstoffproduktion auftritt: Wasserstoff kann durch die Spaltung von Wasser mittels elektrischer Energie gewonnen werden; dabei entstehen Wasserstoff und Sauerstoff. Der Flaschenhals bei der Entwicklung effizienterer Produktionsprozesse ist die Teilreaktion, in der Sauerstoff gebildet wird, die Oxygen Evolution Reaction. Denn diese Reaktion verändert die Katalysatoroberfläche und sorgt dafür, dass die Wasserspaltung im Lauf der Zeit ineffizienter wird. Genau diese Veränderungen an der Oberfläche wollen die Forschenden verstehen, weil sie entscheidend für die Aktivität und Stabilität des Katalysators sind.

Gerade für kleine Nanopartikel von weniger als zehn Nanometern Durchmesser fehlten bislang detaillierte Informationen dazu, was an der Katalysatoroberfläche während der Reaktion passiert. Mit der Atomsondentomografie konnte die Gruppe die Verteilung der verschiedenen Atomsorten in den Cobalt-Eisenoxid-Katalysatoren dreidimensional sichtbar machen. In Kombination mit weiteren Methoden zeigten sie, wie sich die Struktur und Zusammensetzung der Oberfläche während des Katalyseprozesses veränderte – und wie diese Veränderung mit der katalytischen Leistung zusammenhing.

„Atomsondentomografie hat großes Potenzial, neue Erkenntnisse auf atomarer Ebene auch bei anderen katalytischen Reaktionen zu ermöglichen, etwa die Erzeugung von Wasserstoff und der Umwandlung von CO2“, resümiert Tong Li.

Fakten, Hintergründe, Dossiers
Mehr über RUB
  • News

    Von der Natur inspirierte Oberflächen aus dem 3D-Drucker

    Mittels Laserstrahlung können Forschende winzige Strukturen mit höchster Präzision drucken. Eine Methode, um die Superkräfte von Tieren und Pflanzen nachzuahmen und sie für die Technik zugänglich zu machen. Um auch in extremen Habitaten überleben zu können, haben viele Tiere und Pflanzen im ... mehr

    Plastikbudget: Menschen müssen Plastikemissionen um das 6 bis 7-fache reduzieren

    Wenn Kunststoffe in die Umwelt gelangen, bringt das viele negative Auswirkungen mit sich: Diese reichen von erstickenden Lebewesen über den Transfer innerhalb der Nahrungskette bis zu den physikalischen Auswirkungen auf ein Ökosystem. Hinzu kommen Gefahren durch Freisetzung von Additiven, M ... mehr

    Kupfer wirkt effektiv gegen Sars-Cov-2 auf Oberflächen – Silber nicht

    Kupfer und Silber sind für ihre antibakteriellen Eigenschaften bekannt. Bochumer Forschende haben untersucht, was sie gegen Viren ausrichten. Silber- und Kupferionen machen vielen Krankheitserregern den Garaus. Daher werden zum Beispiel Implantate oder medizinische Instrumente mit diesen Me ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr